
Persistent Object Base System
Testing and Evaluation

Elizabeth Fong

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

QC

100

. U56

MO. 5636

1995

NIST

NISTIR 5636

Persistent Object Base System
Testing and Evaluation

Elizabeth Fong

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

April 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

PREFACE

The Computer Systems Laboratory (CSL) of the National
Institute of Standards and Technology (NIST) is assisting the
Advanced Research Projects Agency (ARPA) in a technology evaluation
of persistent object bases (POBs) . POBs, generally referred to as
Object Database Management Systems (ODBMSs) , are database systems
which provide storage and retrieval of data that are not
necessarily tabular (with rows and columns)

.

This project was conducted as part of the ARPA Persistent
Object Base Project, ARPA Order No. 8217. Its publication as a
NISTIR does not imply ARPA endorsement of the conclusions or
recommendations presented.

Certain commercial software products and companies are
identified in this report for purposes of specific illustration.
Such identification does not imply recommendation or endorsement by
NIST, nor does it imply that the products identified are
necessarily the best ones available for the purpose.

1

ABSTRACT

This report summarizes the role of the Computer Systems
Laboratory (CSL) of the National Institute of Standards and
Technology (NIST) in support of the Advanced Research Projects
Agency (ARPA) in the testing and evaluation of persistent object
base (POB) systems. The actual evaluation consists of designing a

testing suite for exercising the POB system for the features
supported. The goal of actual testing is to reveal how well each
feature is being supported. The testing methodology, the abstract
test suite, and the actual test results on the ARPA funded
prototype POB system called Open OODB developed by Texas
Instruments are described.

Keywords: Evaluation; features; object; object Database
Management; persistent object base system; test.

ACKNOWLEDGEMENTS

The ARPA POB project was started in 1990 by Erik Mettala who
initially jump-started the POB evaluation and testing effort.

The major portion of the CSL's contribution to the POB project
is managed under the direction of Dr. Gio Weiderhold. I would like
to acknowledge Dr. Weiderhold for providing me with valuable
technical direction into the evaluation of the POB technology and
for his support in accelerating object-related standards.

K.C. Morris of the Factory Automation Systems Division is the
co-principle investigator for this POB technology evaluation
project. I would like to acknowledge her efforts in POB technology
evaluation for engineering and manufacturing applications using the
international Standard for Exchange of Product Model Data (STEP)
and the STEP data access interface (SDAI)

.

The actual testing is conducted on an ARPA- funded POB system
developed by Texas Instruments (TI) , called the Open OODB. I would
like to thank Dr. Deyuan Yang of NIST who performed the coding and
execution of the test programs.

11

TABLE OF CONTENTS

1.0 INTRODUCTION 1

1 . 1 Background 2

1.2 The Scope of the POB Project 3

1.3 Outline of this Report 3

2.0 METHODOLOGIES FOR TESTING 3

2.1 Functional Testing 4

2.2 Performance Testing 5

2.3 Conformance Testing 5

2.4 Scalability or Stress Test 6

2.5 Other Testing Methodologies 6

3 . 0 FUNCTIONAL TESTING OF FEATURES 7

3 . 1 Determining How to Evaluate POB Features 7

3.2 Criteria For Features to be Tested 8

3.3 The Testing Process 8

4.0 ABSTRACT TEST SUITE DESCRIPTION 11
4.1 Feature Groups of Abstract Test Suite 11
4.2 Abstract Test Cases 11

5.0 CONCLUSIONS 16

6.0 REFERENCES 17

APPENDIX A - TI Open OODB Environment for Test A-l

APPENDIX B - The Movie Application B-l

APPENDIX C - The Open OODB Test Programs Printouts C-l

iii

1 . 0 INTRODUCTION

User acceptance of Persistent Object Base (POB) 1 technology
is still weak. In 1993, the total object database market was
approximately $32 million while ORACLE, a relational database
vendor, alone makes $1.2 Billion. Due to a multiplicity of
emerging object -related "standards" the general users are at the
crossroads between a relational and an object database market.

This report summarizes the role of the Computer Systems
Laboratory (CSL) of the National Institute of Standards and
Technology (NIST) in support of the Advanced Research Projects
Agency (ARPA) in the testing and evaluation of persistent object
base (POB) systems. The goals of this project are to evaluate
various aspects of POB technology, to use these evaluation results
to assess applicability of object technology to design problems and
then to identify the potential usefulness of object technology in
a distributed environment.

1 . 1 Background

Object Database Management Systems (ODBMS) have emerged as a
significant force during the last several years. There are two
driving forces behind the emergence of ODBMS: the need to supply
storage for persistent objects and the need to expand the scope of
existing databases to support manufacturing and engineering
applications

.

A number of commercial ODBMS products and research prototypes
have appeared. The Ovum Ltd. "Object Technology Sourcebook"
[JEFF91] lists 9 vendors that offer ODBMSs that provide most
database functionality. Additionally, [CATT91] covered a dozen
more ODBMS products and prototypes. There are many research
prototypes being funded by ARPA, e.g., Texas Instruments' Open
OODB . The Object Database Management Group (ODMG) has published a
Object Database Standard: ODMG- 93 [CATT94] . There are several
object database vendors promising products in the next year or two.
The use of these products will expand, especially in the
manufacturing and engineering sectors.

As with all new technology, no specific set of criteria
currently can be applied to evaluate and thus identify a system as
being "object." The purposes of an evaluation of POB technology
are to:

o enable the adoption of new technology to industry and

1 Although some believe that there are differences between a
POB and an Object Database Management System (ODBMS)

,
for this

report, these two terms have been used interchangeably.

1

andstandards communities by providing evaluation
recommendations regarding the technology,

o provide a set of criteria for evaluating persistent object
base systems,

o insure that developing persistent object systems are capable
of supporting the needs of users in manufacturing and
engineering,

o identify areas where standardization could accelerate the
development of this technology.

1.2 The Scope of the POB Project

The overall scope of the NIST/ARPA POB project is very broad:
to facilitate the transition of POB technology into industrial
implementation. To accomplish this, two aspects of this process
are targeted:

o transfer realistic and testable object database requirements
to the POB community, and enable the transfer of new POB
technology to the user community;

o generate recommendations for the definition of standards
related to POB technology.

The specific task in support of the overall goals of the POB
project is to develop a test and evaluation methodology. The
actual evaluation involves not only a review of literature, POB
products and documentation, but also an in-depth investigation on
whether a POB system supports particular features. The evaluation
consists of designing a test suite for exercising the POB system
for the features supported. The goal of actual testing is to
reveal "how well" each feature is being supported.

This report will describe the testing and evaluation of POB
technology using one of the ARPA funded prototype POB systems,
called Open OODB, developed by Texas Instruments [TIAP93, TIQU93]

.

1.3 Outline of this Report

An overview of the methodologies for testing is presented in
Section 2. The actual testing strategy used for the evaluation of
POBs is feature testing which is designed to test functionality and
not its implementation. The feature areas and the testing process
are discussed in Section 3 . Section 4 contains the abstract test
cases. Section 5 contains conclusions focused on TI's Open OODB
and the results from the tests. The Appendix contains the TI Open
OODB test environment description, a sample application diagram,
and the actual executable test programs for Open OODB.

2

2 . 0 METHODOLOGIES FOR TESTING

The "test" addressed in this paper does not referred to find
errors in a computer program, but rather used in the sense of
finding the intended behavior of the software. In this context,
many methodologies often associated with object-oriented software
testing are not appropriate. The type of testing methodologies
reviewed in this section include functional tests, performance
tests, conformance tests, etc. An extended, formal treatment of
test and verification methodology is beyond the scope of this
paper; however, some testing methodologies are described here.

2.1 Functional Testing

Functional testing is also called quality testing. It is
designed to determine if a specified feature, or capability is
present in an implementation. Hence, the purpose of functional
testing is for existence, correctness, and power of each feature.
This means such a test is intended to show how well the
functionality is being met.

Functional testing is useful for the ARPA/NIST POB testing and
evaluation for several reasons:

o Functional testing will reveal the exact definition and
behavior of a specific feature, irrespective of how it is
implemented

.

o Functional tests will guide users in articulating application
requirements

.

o The test results will permit users to verify that a given
feature exhibits the desired functionality, thereby providing
a level of quality assurance.

o The functional testing process will support the development of
the rapidly evolving standard specifications. The initial
specification of object features in the OODBTG Reference Model
[00DB91] must be validated as meeting the needs of the user
community. The results and recommendations generated by
functional testing will be fed back to standards organizations
for review and action. A standards committee may then amend
the specifications, affected portions may be re-tested, and
the specifications can be further improved.

It is important to realize that not all features are testable.
Accordingly, it is important in the formulation of a list of
features to determine an appropriate level of detail at which the
features should be specified. A feature should be atomic enough
that it makes some sense to assign a scalar (one-dimensional)
rating, but not so detailed as to exhaust test resources (time and

3

personnel) in an attempt to evaluate a very large number of "small"

factors

.

The challenge in functional testing is that some functions may
not be sharply defined, e.g., does everyone agree what "multiple
inheritance" is? If the definition of function is not clear and
subject to different interpretation, the test needs to supplement
it with clarification.

Another consideration of functional testing is that the
scoring technique for each test is largely manual . Testing if a

capability exists should result in a "YES" or "NO" answer.
However, to determine to what level a feature has been met requires
human evaluation and relative ratings. Subjective numeric quantity
can be used.

2.2 Performance Testing

A performance benchmark consists of a set of test programs
designed to measure the performance of an operational system.
Measuring performance of object database systems in a generic
manner is very difficult, since every application has somewhat
different requirements. For example, measuring individual
persistent data object access at this level may provide some timing
comparisons, but may not be accurate when measured in conjunction
with an object query language processor.

The design of a benchmark for POB systems requires more
research. In particular, the interpretation of benchmark results
must be carefully defined. Assumptions on the data model, database
architecture, programming languages used, etc. are all factors to
be determined. Representative operations for engineering
applications must be emphasized. A well known, simple, engineering
database benchmark has been designed by R. Cattell [CATT91]

.

The design and execution of benchmark testing is a complex
task. Problems with performance benchmark testing are quoted from
[STON88] as follows:

"Any person who designs a benchmark is in a 'no win'
situation, i.e., he can only be criticized. External
observers will find fault with the benchmark as
artificial or incomplete in one way or another. Vendors
who do poorly on the benchmark will criticize it
unmercifully. On the other hand, vendors who do well
will likely say the benchmark is poor but that one should
use it anyway.

"

4

2.3
Conformance Testing

Conformance testing is designed to reveal whether the
implemented system is in conformance with the standard
specification. Of course, the first requirement is that the
standard specification, be it formal or informal, must exist.

Conformance testing usually tests for both standardized syntax
and semantics. Some standards also include test assertions for the
construction of test suites. An example of abstract test suites
for use in conformance testing is the ISO 10303 "Product Data
Representation and Exchange [PDES94]

.

Conformance testing should have a predefined expected result,
so that scoring in the form of pass/fail can be made automatically.

Since no standard currently exists for POB technology, no
conformance testing is possible at this time.

2.4 Scalability or Stress Test

Another testing methodology is testing for scalability.
Scalability testing is designed to find out how large can various
objects (entities, attributes, relationships, etc.) be made and
still be manipulated? How many simultaneous users' accesses can be
supported? The purpose of scalability testing is to develop tests
for maximum capacity and test for failure when maximum capacity is
reached. However, the execution of some of the tests can be very
time consuming and resource intensive. Most systems provide
parameters for the scalability of some size definitions at system
installation time, and most commercial systems allow very large,
dynamically adjusting spaces.

2.5 Other Testing Methodologies

There are other testing methodologies designed to determine
specific criteria of a system. For example, select representative
usage scenarios of the intended applications may be defined. The
objective of this kind of test is to determine if the system is
suitable in performing the intended tasks for a particular domain.
The evaluation criteria to be used in this area of testing need to
be carefully determined. The use of application development tools
also should be considered.

5

3 . 0 FUNCTIONAL TESTING OF FEATURES

The testing strategy for the NIST/ARPA POB project will be to
evaluate and test the ability of POBs to support features which are
widely required [F0NG91] . The considerations for features to be
tested are discussed in Section 3.2. The strategy is designed to
test functionality (or capability) , not its implementation. This
means that, for instance, we may wish to know if location-
transparent access to objects is possible, not the details of
whether global data dictionaries are stored at particular sites or
at all sites.

3 . 1 Determining How to Evaluate POB Features

The main focus of the design of POB tests is to determine
which features are meaningful and testable.

As the project name "persistent object base" implies, some
features to be tested are those typically associated with object
data management. There is currently no consensus on a specific set
of criteria that can be applied in order to evaluate and thus
identify a POB system as being "object." There are many articles
found today in the open literature which identify some of the
existing and ongoing work in the definition of features needed to
support "object" systems [DABR90, 00DB91, STON90] . In the Object-
Oriented Database Task Group report [00DB91] , the reference model
also identified a set of features for a database system to qualify
as "obj ect .

"

Certain features are simple and it is not necessary to design
tests for them. An example of a simple feature might be whether
the target system supports an ad-hoc query capability. Other
features are not testable without exercising quantitative judgment.
An example might be the "encapsulation" feature. Some features can
be tested directly; however, the methods for testing can be
diverse. For example, to design a test for concurrency control may
require setting-up multiple user workstations and synchronizing the
test execution. Some features can be executed interactively and
the results are presented on the screen. In this case, the tester
needs to eyeball the results and verify their correctness. Some
features are best tested in compiled mode while some features need
to be tested in interpreted mode.

A good policy for the design of feature tests is to develop
independent tests which only exercise a single feature. Each test
should be self -evaluating, i.e., each test is written with
knowledge of the data in the database or the correct response for
a specific statement. Each test checks for correct execution and
prints out "pass" or "fail" value for that test.

6

There are feature areas that will be excluded from testing
either because they are less critical for application development
or because they are less understood or too difficult to test.
These could include such things as methods for optimization. There
are also many meta- features such openness, seamlessness,
robustness, interoperability, etc., which will require more
research to determine how they should be tested.

The abstract test suites defined in Section 4 of this report
is a subset of what might be needed to totally evaluation a POB
system.

3.2 Criteria For Features to be Tested

It is important to identify the criteria for selecting those
features to be tested. Considerations for features to be tested
are as follows:

o The features that are normally claimed to be "object"
features. Examples of object features are persistence, object
identities, inheritance, complex objects, etc.

o The features that are supported by more traditional database
management systems. Examples of such features are schema
definition, populating a database, data manipulation in the
form of data insertion, data deletion, and data retrievals
with conditions, etc.

o The advanced features that are required in support of
engineering and manufacturing application development. These
include support for version control, concurrency control,
advanced and long transaction processing, complex data
structures, schema evolution, distributed client-server
architecture and communications, etc.

o There are other features which involve system integration
aspects. For example, support for replication of data, or
graphical user interfaces, etc.

3.3 The Testing Process

Testing will be done using test scripts (scenarios) run using
fragments of data. Fragments of data consist of an object-oriented
schema description (including operations) and instance data. The
actions associated in one script may test many different features
of the POB. Several scripts may be run using one data fragment.

The testing process involves the following steps:

Identify feature areas that are generally considered to be
useful for the POB.

7

Identify a specific capability within a feature area which can
be reasonably tested.

Establish verdict criteria and conditions for the design of
direct testing of this feature.

Develop an abstract test case for this feature. This is the
detailed specification of a scenario and the sequence of
operations that needs to be performed and the specification of
how the results are to be interpreted.

Identify the implementation specific characteristics of the
system under test

.

Translate the abstract test case scenarios into executable
test code for the target POB system under test.

Implement and run the executable test code with all the
environment and conditions against the POB system to be
tested.

Compare and review the results with the predicted results.
The tests are designed to isolate individual features as much
as possible. It is quite possible that for each test case
scenario, many features will be tested with coordinated
sequences. The results may be accumulative with the previous
results affecting the later results.

Generate the validation report.

Figure 3.1 describes the testing process.

8

Figure 3.1 - Testing Process

9

4.0
ABSTRACT TEST SUITE DESCRIPTION

The abstract test suite for testing and evaluating a POB
system consists of a set of abstract test cases. Each abstract
test case is a specification, encapsulating at least one test
purpose, that provides the basis from which executable test cases
are derived.

4 . 1 Feature Groups of Abstract Test Suite

The abstract test cases are grouped according to the following
functions

:

Simple Database Features:
- Schemas or classes and sub-classes creation
- Database population features
- Data retrieval features:

- Retrieval using object identifiers
- Retrieval using object query language

Database update features
Meta data inspection and retrieval features

Object Features:
Single inheritance features
Multiple inheritance features
Object identification retrieval (same as data
retrieval using object identifiers)

.

Advanced Database Features

:

Version control
Concurrency control

Advanced Features to Support Engineering Applications:
Configuration Management
Dynamic Schema Evolution
Distributed Communications
Recovery and Backup
Composite objects
Long Transaction Management
Authentication and Security

For this report, the advanced features to support engineering
applications have not been developed. The above set of features
identified may not be the complete test suites to totally
evaluation a POB system under test.

4.2 Abstract Test Cases

The abstract test cases are described by the following set of
headings: The test number, a prose description about the purpose of
the test, the test requirements if any, and the expected results.

10

The test requirements are the pre-conditioning for this test case.
The expected results, sometimes referred to as verdict criteria,
are assertions on the observable output of an implementation under
test

.

The test application schema and data is also specified in a
generic sense. The actual executable test code for exercising the
target POB under test will use a sample application called the
"Movie" database which is described in Appendix B.

Schemas or Classes and Subclasses Creation

Test Number: BDBF-001
Description: Create a schema with classes which have attributes.
Requirements: A schema could consist of one or more attributes.
Expected Result: A class with attributes is created.

Test Number: BDBF-002
Description: Create a schema with class and a sub-class.
Requirements: One class is a sub-class of the other class.
Expected Results: A class and a sub-class are created.

Test Number: BDBF-003
Description: Create multiple classes and sub-classes.
Requirements: Multiple classes with attributes and sub-classes

with attributes are created. Attributes from
super-classes are inherited.

Expected Results: The total schema is created.

Database Population Features

Test Number: BDBF-004
Description: Populate data into database with a batch file.
Requirements: An external batch file of data to be read and the

schema of the database is defined.
Expected Results: Data loaded into database.

Data Retrieval Features

Test Number: BDBF-005
Description: Retrieve objects using record keys.
Requirements: One or more objects stored as persistent data.
Expected Results: Record with the designated key is retrieved.

Data Retrieval using Object Identifiers

Test Number: BDBF-006
Description: Retrieve objects using user-generated sequence

number

.

11

Requirements: One or more objects stored as persistent data.
Expected Results: The designed number of objects starting with

specific sequence number are retrieved.

Test Number: BDBF-007
Description: Retrieve system-assigned Object Identifier (OID)

.

Requirements: Object Identifiers are assigned to objects stored
as persistent data.

Expected Results: The OID is fetched and reported.

Form Collection of Data for Object Query Language

Test Number: BDBF-009
Description: Create a set or list of a class.
Requirements: Create a collection of objects: set or list. This

is necessary for executing Object Query Language.
Expected Results: A set (list) of class is created.

Retrieval with Object Query Language

Test Number: BDBF- 010.1
Description: Select objects using OQL where COMPARE_EQUAL

.

Requirements: A collection of objects are formed such that
Select-From-Where statement can be applied.

Expected Results: Matched results are reported.

Test Number: BDBF-010.2 and BDBF-010.3
Description: Select objects using OQL where LESS/GREATER.
Requirements: A collection of objects are formed such that

Select-From-Where statement can be applied.
Expected Results: Less/Greater results are reported.

Test Number: BDBF-010.4 and BDBF-010.5
Description: Select objects using OQL qualified with AND/OR.
Requirements: A collection of objects are formed such that

Select-From-Where statement with conjunction and
disjunction can be applied.

Expected Results: Matched results are reported.

Database Update Features

Test Number: BDBF-011
Description: Read, modify and write objects.
Requirements: Known objects to be read, its values can be

modified and stored back in persistent store.
Expected Results: Objects value changed to the modified values.

Meta Data Inspection and Retrieval Features

Test Number: BDBF- 012
Description: Retrieve a specific class definition from

dictionary

.

12

Requirements: The "Type" information based upon the defined
schema exists in the dictionary.

Expected Results: The type information is reported.

Test Number: BDBF-013
Description: Retrieve a class definition and all its sub-class

definitions from dictionary.
Requirements: All of class definitions and its sub-class type and

attribute information exit in the dictionary.
Expected Results: The class and sub-classes' definition

including name and type information are
reported

.

Single Inheritance Features

Test Number: BDBF-015
Description: Create a class and a sub-class and allow all the

attributes to be inherited to the sub-class.
Requirements: The attributes from the super-class are defined.
Expected Results: All the attributes are included in the sub-

class .

Multiple Inheritance Features

Test Number: BDBF-016
Description: Create a sub-class which is multiply inherited from

two super-classes. These two super-classes are in
turn derived from the same super-super-class.

Requirements: The attributes from both super-classes are defined.
Expected Results: The dictionary should contain all the class

relationships and attribute type information.

Version Control

Test Number: BDBF-019
Description: Create objects with version.
Requirements: New objects with version exists.
Expected Results: Display the newly versioned object.

Test Number: BDBF-020
Description: Fetch newly versioned objects and show version.
Requirements: Create a new version (do Test Number BDBF-19) and

retrieve the newly versioned object and display the
new version number.

Expected Results: Objects with new version indication.

Test Number: BDBF-21
Description: Fetch the old versioned objects which have been

newly versioned.
Requirements: Create a new version (do Test Number BDBF-19) and

retrieve the old versioned object.
Expected Results: Objects with old version indication.

13

Concurrency Controls

Test Number: BDBF-022
Description: Test for concurrency control when both clients are

trying to read the same object.
Requirements: Start running a "fetch object" program and at

another window initiate a "fetch object" program.
Expected Results: No standard way for concurrency control.

Expect both programs are reading data or one
of the read is lockout.

Test Number:
Description

:

Requirements

:

BDBF-023
Test for concurrency control when one client is
retrieving, while the other client is trying to
update the same object.
Start running an "update object" program while also
at another window initiate a "fetch object"
program

.

Expected Results: No standard way for concurrency control.
Expect one program is reading and the other
program is going to update. The read program
should not be locked.

Test Number:
Description

:

one client
is trying

is
to

BDBF-024
Test for concurrency control when
updating, while the other client
retrieve the same object.
Start running a "fetch object" program while also
at another window initiate an "update object"
program.

Expected Result: No standard way for concurrency control.
Expect the "retrieve object" should not get
old data.

Requirements

Test Number: BDBF-025
Description: Test for concurrency control when two clients are

both trying to update the same object.
Requirements: Two clients updating one object in database

concurrently

.

Expected Results: One is updating and the other should wait
until lock is released.

14

5.0 CONCLUSIONS

In this report, we have defined a number of feature test
cases. These test cases are described abstractly in English.
These test cases are then translated into executable code that can
be run against the system under test; in this case, TI ' s Open OODB
code. Each of the test programs is individually executed and
results generated. The test programs and the results of Open OODB
appeared in Appendix C of this report

.

The Open OODB is designed as an open, modular, extensible
architecture. It is essentially a "toolkit" in which modules in
the toolkit can be combined in different ways so that custom
systems can be built from reusable parts. The alpha release of the
Open OODB system has minimal support for functionality including
persistent object store, object query, change management and
transaction store, but not extended transactions and other complex
database functions. These tests were run on the alpha release of
Open OODB. Later enhanced version of Open OODB may get different
results

.

The results obtained in this report reflect the observed
behavior of the Open OODB with respect to a feature definition.
The results are not indicated as "yes" or "no" because the
semantics of features can be interpreted widely. For example, in
testing for support of version control, one of the test case calls
for the retention of old version, however, the system under test
may not automatically support this feature. Testing the
implementation of how concurrency control is supported can be
tricky because there is no standard or "correct" way in specifying
how the concurrency control feature should be implemented. The
results analysis for feature testing cannot be automated into a
"Pass" or "Fail" score, but need to be carefully analyzed.

For evaluation purposes, these abstract test cases may be re-
used to test several different POB systems. Each feature area's
test cases can be coded and executed on different POB systems and
the results analyzed and compared. The feature analysis resulting
from actual system testing could provide a greater level of
precision in understanding the different semantics of a feature.

15

6 . 0 REFERENCES

[CATT91]

[CATT94

]

[DABR90]

[F0NG91]

[JEFF91]

[00DB91]

[PDES94]

[STON88]

[STON90]

[TIAP93

]

[TIQU93

]

Cattell, R.G.G. Object Data Management: Object-
oriented and extended relational database systems,
Addison-Wesley , 1991.

Cattell R.G.G. (Editor) The Object Database
Standards: ODMG - 93 , Morgan Kaufmann Publishers,
19 94.

Dabrowski, C., Fong, E., and Yang, D., Object
Database Management Systems: Concepts and
Features, NIST Special Publication 500-179, April
1990

Fong, Elizabeth, "The ARPA/NIST Persistent Object
Base Testbed, " Position Paper for Texas Instruments
Open OODB Workshop I, March 1991.

Jeffcoate, J. and Templeton, A. Object Technology
Sourcebook , Ovum Ltd, 1991.

Object-Oriented Database Task Group,
"X3 /SPARC/DBSSG/OODBTG Final Report, Available form
E. Fong at efong@nist.gov September 1991.

ISO TCI 84/SC4/WG6 N82, "Guidelines for the
Development of Abstract Test Suites, " Working Draft
of Product Data Representation and Exchange of ISO
10303 Part 1200 Series, 13 September 1993.

Stonebraker, M. (ed.) Readings in Database Systems ,

Chapter 4, Performance and Database Machines,
Morgan Kaufmann Publishers, Inc. 1988.

Stonebraker, M. et. al . , Committee for Advanced
DBMS Functions, "Third-Generation Database System
Manifesto," in SIGMOD Record, Volume 19, No. 3,
September 1990.

Open OODB C++ API User Manual Release 0.2 (Alpha),
Texas Instruments Incorporated, 1993.

Open OODB Query Language User Manual Release 0.2
(Alpha), Texas Instruments Incorporated, 1993.

16

APPENDIX A TI Open OODB Environment for Test

The Texas Instruments Open OODB (Release 0.2 Alpha) is the POB
system under test. It is installed at the NIST Computer Systems
Laboratory. The environment consists of the following:

Hardware : Sun/Sparc
Operating System: SunOS 4.1.3
Hostname and Port: Speckle: 8000
Software: C, Gnu C++, Sun C++, and X-Window
Communication: TCP/IP

A-

1

APPENDIX B The Movie Application

The sample application schema used for the test scripts is
from the data collected by Dr. Gio Weiderhold called the "Movie"
database (see diagram)

.

TI Open OODB Movie Classes

Legend:

Inheritance

Attribute

B-l

APPENDIX C - Open OODB Test Programs and Results

The testing programs for The Open OODB system are included
here in this Appendix C. Although care has been taken to make this
Appendix as readable and as complete as possible, some of the
programs listed here are not self contained and require other
programs in the libraries to exist. The values of the sample
database are factitious. Not all results can be shown and these
are explained at the end of each test. Some tests are executed
interactively, for example the 4 test programs on concurrency
control and the outcome of the test are described.

C 1

j * * * +

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

! * * *

Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

Test ID No.
Description
Requirements

pschemal . cc
05/31/94
06/26/94
1.2

BDBF-001
Create a schema with classes which has attributes.
A schema could consist of one or more attributes.

Expected Results: A class with attributes is created.

C++ API commands used:
OODB *my_oodb (hostname

:
port

)

beginTransaction (

)

commitTransaction (

)

persist ("my_ob j ect "

)

persist ("my_oid"

)

Testing Results : OK. The class PEOPLE with attributes has been
createdit*

* * * I
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

* * * j

#ifdef _SCHEMA_H
#else
#def ine SCHEMA H

#define maxFieldNum 10
#define maxFieldWidth 64
#define maxObjNum 56
#define startOidNum 1000

#include
#include
#include

<stdio . h>
<stdlib . h>

<strings . h>

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

char*
s_String
s_String
s_String
s_String
s_String
s_String
s_String
char*

s_String;
producer_type

;

process

;

role_type

;

year;
gender;

geography;
movie_category

;

text ;

// 10 attributes

class People
{

protected

:

s_String
s_String
s_String
s_String
s_String
s_String
year
year
geography

id_name

;

pcode

;

dcode

;

dow_start_end

;

last_name

;

f irst_name

;

dob;
dod;

origin;

C 2

s_String notes;

public

:

People (s_String, s_String, s_String, s_String, s_String, s_String, year,
geography, s_String)

;

People () { }

;

-People ()

;

int create (s_String*)

;

int show ()

;

void update_value (char*)

;

char* get_id_name ()

;

char* get_pcode ()

;

char* get_dob ()

;

char* get_dod ()

;

char* get_origin ()

;

} ;

#endif

* Result 001 *

Please see Result 012.
All of the manipulations are based on the created schema.

C - 3

year,

/****
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

j * * * * *

Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

pschema2 . cc
05/31/94
06/26/94
1.2

BDBF-002
Create a schema with two classes.
One class is a sub-class of the other class.

Test ID No.
Description
Requirements
Expected Results: A class and a sub-class are created.

C++ API commands used:
OODB *my_oodb (hostname

:
port

)

beginTransaction (

)

commitTransaction (

)

persist ("my_obj ect "

)

persist ("my_oid"

)

Testing Results : OK. The class PEOPLE and the sub-class ACTOR
has been created

+**+***********+***+*****

* * * j
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

* * * j

#ifdef _SCHEMA_H
#else
#def ine SCHEMA H

#define maxFieldNum 10
#define maxFieldWidth 64
#define maxObjNum 56
#define startOidNum 1000

#include
#include
#include

<stdio . h>
<stdlib . h>

<strings . h>

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

char*
s_String
s_String
s_String
s_String
s_String
s_String
s_String
char*

s_String;
producer_type ;

process

;

role_type

;

year;
gender;

geography;
movie_category ;

text ;

// 10 attributes

class People
{

protected

:

s_String
s_String
s_String
s_String
s_String
s_String
year
year
geography
s_String

id_name

;

pcode

;

dcode

;

dow_start_end

;

last_name

;

f irst_name

;

dob;
dod;

origin;
notes

;

C 4

public

:

People (s_String, s_String, s_String, s_String, s_String, s_String, year, year,
geography, s_String)

;

People () { }

;

-People ()

;

int create (s_String*)

;

int show ()

;

void update_value (char*)

;

char* get_id_name () ;

char* get_pcode();
char* get_dob ()

;

char* get_dod ()

;

char* get_origin ()

;

};

// 10 attributes will be inherited from People

class Actor : public People

s_String
gender
year
year
role_type
text

stagename

;

sex;
dow_start

;

dow_end

;

roles

;

notes

;

public

:

Actor (s_String, s_String, s_String, s_String, s_String, s_String, year, year,
geography, s_String, s_String, gender, year, year, role_type, text)

;

-Actor ()

;

int create (s_String*)

;

int _create (s_String*)

;

int show ()

;

friend Cast;
};

#endif

* Result 002 *it*
Please see Result 012.
All of the manipulations are based on the created schema.

C 5

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Testing Program
for

Texas Instruments OOODB

File Name
Date
Modif ing
Version

pschema3 . cc
05/31/94
06/26/94
1.2

Test ID No. : BDBF-003
Description : Create multiple classes and sub-classes.
Requirements: Multiple classes with attributes and sub-classes

with attributes are created. Attributes from
super-classes are inherited.

Expected Results: The total schema is created.

C++ API commands used:
OODB *my_oodb (hostname

:
port)

beginTransaction (

)

commitTransaction (

)

persist ("my_object"

)

persist ("my_oid"

)

Testing Results : OK. The total MOVIE classes have been created

****************************+*******

* j
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

* * /

#ifndef _SCHEMA_H
#def ine SCHEMA H

#define maxFieldNum 10
#define maxFieldWidth 64
#define maxObjNum 56
#define startOidNum 1000

#include <stdio.h>
ttinclude <stdlib.h>
#include <strings.h>

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

char*
s_String
s_String
s_String
s_String
s_String
s_String
s_String
char*

s_String;
producer_type

;

process

;

role_type

;

year;
gender;

geography;
movie_category;

text ;

// 10 attributes

class People
{

protected

:

s_String
s_String
s_String
s_String
s_String
s_String
year
year
geography
s_String

id_name

;

pcode

;

dcode

;

dow_start_end

;

last_name

;

f irst_name

;

dob

;

dod
origin
notes

C 6

s_String,
public

:

People (s_String, s_String, s_String, s_String, s_String (

year, year, geography, s_String)

;

People () { }

;

-People ()

;

int create (s_String*)

;

void update_value (char*)

;

int show ()

;

char* get_id_name ()

;

char* get_pcode ()

;

char* get_dob ()

;

char* get_dod ()

;

char* get origin (),•

};

// 10 attributes will be inherited from People
class Actor : public People

{

s_String stagename;
gender sex;
year dow_start
year dow_end
role_type roles
text notes

public

:

Actor (s_String, s_String, s_String, s_String, s_String, s_String,
geography, s_String, s_String, gender, year, year, role_type

Actor () { } ;

-Actor ()

;

int create (s_String*)

;

int _create (s_String*)

;

int show ()

;

friend Cast;

class Cast
{

s_String
s_String
Actor
Director
Award
role_type
text
s_String

public

:

int create (s_String*)

;

int show ()

;

void get_data (s_String* , char*

f ilm_id;
title

;

*actor

;

director;
*actor_award;

actor_role

;

role_desc

;

notes

;

// == Movie;

7/ 12 attributes of class Movie
class Movie
{

s_String
s_String
year
s_String
s_String
producer_type
s_String
process
movie_category
s_String
s_String
text

public

:

int show ()

;

f ilm_id;
title

;

ref_year

;

director;
stdios

;

producers

;

dist ;

prc;
category;
awards

;

location;
notes

;

year, year,
, text)

;

C 7

int create (s_String*)

;

void get_data (s_String* , char*);
friend Cast;
friend Director;

} :

class Director: public virtual People

{

s_String stagename;
s_String company;
s_String notes;
Movie *movies;

public :

int create (s_String*)

;

int show ()

;

int _create (s_String*)

;

void get_data (s_String* , char*)

;

friend Cast;
};
class ADirector : public Actor, public Director
{

s_String stagecode;
s_String notes;

public

:

// ADirector (s_String , Movie);
int show ()

;

int create (s_String*)

;

int _create (s_String*)

;

void get_data (s_String* , char*)

;

friend Cast;
};
class Award
{

s_String award_name;
text agency;
s_String place;

public

:

int show ()

;

int create (s_String*)

;

void get data(s String*, char*);
} ;

" '

#endif

* Result 003 *************
Please see Result 012.
All of the manipulations are based on the created schema.

C 8

I**/
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Testing Program
for

Texas Instruments OOODB

File Name
Date
Modif ing
Version

pmake_data . cc
05/31/94
06/26/94
1.2

Test ID No.
Description
Requirements

BDBF-004
Populating data into database with a batch file.
Read an external batch file of data and load data

into the database with defined schema.
Expected Results: Loaded data into database and making these

/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* data persistent. */
/* */
/* C+ + API commands tested: */
/* beginTransaction (

)

*/
/* commitTransaction (

)

*/
/* persist ("my object") */
/* */
/* Testing Results : OK. The 56 records loaded and made persist. */
/* */
/**/

#include "OpenOODB .
h"

#include "Typeinfo .
h"

#include <libc . h>
#include <stdio . h>
#include <stdlib . h>
#include <strings . h>
#include <iostream . h>
#include "schema.h"

static FILE* fp;
/*
* Read data from the file.
*/

int
createObj (FILE* fp,FILE* fp2, s String* name)
/

-

int index = 0

;

int cl, ch;
char* recBuf = new char [maxFieldWidth]

;

int numField ;

int recNum = 1 ;

int flag ;

int count, k, kk;
char* movie = new char [maxFieldWidth]

;

int num;
OODB *p oodbl = new OODB ("speckle : 8000")

;

People *p_people [maxObjNum]

;

int len = 0

;

int blank;
flag = 1;
numField = 0;
for (len=0; lencmaxObjNum; len+ +) p^people [len] = new People;
p_oodbl -> beginTO;

while (((ch = getc(fp)) != EOF)&&(ch != '#')){};
fprintf(fp2, "\nRecord No. %d \n", recNum++);

num = 0

;

while (ch ! = EOF)

{

recBuf [0] = ' \0
'

;

C 9

}

count = 0

;

len = strlen (recBuf)

;

index = 0

;

movie [0] = ' \0
'

;

while ((ch != '#')&&(ch !='\n')){
recBuf [index] = ch;
flag = 0;
ch = getc (fp)

;

index++

;

}
'•

if (flag == 0) {

len = strlen (recBuf

)

recBuf [index] = '\0'

len = strlen (recBuf

)

index++

;

fprintf(fp2, "%s ", f ieldName [numField]
fprintf(fp2, "%s ", recBuf);
if (numField < maxFieldNum - 1) {

while (recBuf [count] == '
'

)
{count++; }

;

kk = 0 ;

for(k = count ; k <len; k++)

{

if (recBuf [k] ! = '
'

) {

recBuf [kk++] = recBuf [k]

;

}

;

recBuf [kk] =
'
\0

'

};

strcpy (name [numField] , recBuf);
numField++

;

}
else flag = 0;

if (ch =='#'
) {

cl = getc (fp)

;

ch = cl

;

if (cl ==' \n'
) {

numField = 0

;

flag = 1;
movie [0] =

'
\0

' ;

p_j)eople [num] ->create (name) ;

strcpy (movie
,

genOidO) ;

p_people [num] ->persist (movie)

;

p_people [num] ->show()

;

p_people [num] - >persist (name [0])

;

if (num == 0)

{

printf("Hit any key to continue");
blank = getchar()

;

};
num++

;

fprintf(fp2, "\nRecord No. %d \n", recNum++)

;

while (((ch = getc(fp)) != EOF)&&(ch != '#')){}
} i

}
else ch = getc(fp);

p_oodbl -> commitTO;
return (- 1)

;

* Result 004 *

Please see result 005 and 006 with 56 records stored.
All of the manipulations are based on these data.

C 10

/**/
/* Testing Program */
/* for */
/* Texas Instruments OOODB */
/* */
/* File Name : pfetchl.cc */
/* Date : 05/31/94 */
/* Modif ing : 06/26/94 */
/* Version : 1.2 */
/* */
/* Test ID No. : BDBF-005 */
/* Description : Retrieving objects using record keys. */
/* Requirements: One or more objects retrieved based upon keys. */
/* Expected Results: Matched records retrieved and shown on screen. */
/* */
/* C++ API commands used: */
/* beginTransaction (

)

*/
/* commitTransaction (

)

*/
/* fetch ("my_ob j ect "

)

*/
/* abortT (

)

*/
/* */
/* Testing Results : OK. The objects of PEOPLE with specific names */
/* are retrieved. */
/* */
/***/

#include
#include
#include
#include
#include
#include
#include
#include

" OpenOODB .
h"

"Typeinf o .

h"

<libc . h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream . h>
"schema.h"

OODB *p_oodbl = new OODB ("speckle : 8000 ")

;

retrieve (

)

{

int number;
char answer;
char* key = new char [maxFieldWidth]

;

People *p_people = new People;

printf (" ==Following is going to retrieve the data from people DB==\n\n\n")
printf (" ==Name of the classes is People \n");
number = 0

;

p_oodbl -> beginT ()

;

printf ("Do you want to retrieve OBJECTS? (y/n) \n");
cin >> answer;
key [0] = ' \0 '

;

while (answer == 'y')
{

printf ("Do you want to retrieve specific OBJECTS? (y/n) \n");
cin >> answer;

while (answer == 'y'){
printf (" Please

,
give the key: NAME of the PEOPLE\n");

cin >> key ;

if ((p_people = (People*) p_oodbl- >fetch (key)) != NULL)

{

p_people -> show ()

;

}
else ("The NAME: %s record is not exisiting in the DB.\n", key)

;

printf ("Do you want to retrieve more OBJECTS? (y/n) \n");
cin >> answer;

} ;

printf ("Do you want to quit the session (y/n) ? \n");

C 11

\n\n")

;

cin >> answer;
if (answer == 'y') answer = 'n';
else

{
printf("\n\n

answer = ' y'

;

I;
printf ("\n\n Successfully! \n\n")

;

p_oodbl -> abortT ()

;

return (0)

;

}

* Result 005 *

> Fetch_people_key
Hurwifeg

==Following is going to retrieve the data from people DB

==Name of the classes is People
Display starting

id_name :

pcode :

dcode :

Dow_start_end
lastnm :

firstnm :

dob :

dod :

origin :

notes :

Hurwitz
871
TAB

: @1977
Abduladze
Tengiz

UN
Ru
Or (Georgian)

Successfully

!

C 12

/******************!
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

I
File Name
Date
Modif ing
Version

Test ID No.
Description

Requirements

Testing Program
for

Texas Instruments OOODB

pfetch2 . cc
05/31/94
06/26/94
1.2

BDBF-006
Retrieve objects using user-generated sequence
number

.

One or more objects retrieved starting at the ith
sequence number.

/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Expected Results: The ith objects are retrieved and shown on screen.*/
/* */
/* C+ + API commands used: */
/* beginTransaction (

)

*/
/* commitTransaction (

)

*/
/* fetch (" sequence No") */
/* abortT (

)

*/
/* */
/* Testing Results : OK. The designed number of objects starting */
/* with specific sequence number are retrieved. */
/* */
/**/
#include " OpenOODB .

h"

ttinclude " Typeinfo .
h"

#include <libc . h>
#include <stdio . h>
#include <stdlib . h>
#include <strings .h>
#include <iostream . h>
#include "schema .

h"

browse (

)

s_String * name

;

int i ;

int num, number;
int start num;
int total

;

char answer

;

int blank;
char* key = new char [30];
char* movie = new char [40]

;

printf (" ==Following is going to retrieve the data from movie DB==\n\n\n")
printf ("==Name of the class is People\n");
numbe r = 0

;

OODB *p_oodbl = new OODB ("speckle : 8000")

;

name = new s_String [12]

;

People *p_j?eople;
for (i=0; i<=ll; i++) name [i] = new char [30];
p_oodbl -> beginT ()

;

movie [0] = ' \0
'

;

numbe r = 1

;

strcpy (movie
,

gen0id(1000 + number))

;

while ((p_people = (People*) p_oodbl - >fetch (movie)) != NULL) {

number++

;

strcpy (movie, gen0id(1000 + number));
};
total = number- 1;
num = number;

C 13

start_num = 1;
printf("Do you want to retrieve OBJECTS? (y/n) \n");
cin >> answer ;

key [0] = ' \0 '

;

while (answer == 'y')
{

printf (

" \nThere are \"%d\" objects \n" , total);
printf (

" \nDo you want them all? (y/n) \n");
cin >> answer;
if (answer ! = '

y
'

)

{

printf ("==How many objects do you want to retrieve? \n");
cin >> num ;

cout << "==Starting Object No.; "

;

cin >> start_num;
cout << " \n" << flush;
num = num + start num;

for (number = start_num; number < num ; number++)

{

movie [0] = ' \0
'

;

strcpy (movie
,

genOid (number + 1000));
if ((p_people = (People*) p_oodbl- >fetch (movie)) != NULL)

{

printf ("\n Object NO. %d \n", number);
p_people -> show ()

;

printf ("Hit any key to continue");
blank = getchar ()

;

}; /* end of FOR */
cout<< "Do you want to quit the session (y/n) ? \n" ;

cin >> answer;
if (answer == 'y') answer = 'n';
else

{
printf (" \n\n\n\n")

;

answer = 'y';

p_oodbl -> abortT ()

;

****+***********
* Result 006 *

==Following is going to retrieve the data from movie DB==
==Name of the class is People
Do you want to retrieve OBJECTS? (y/n)

y
There are "56" objects
Do you want them all? (y/n)
n
==How many objects do you want to retrieve?

1
==Starting Object No.": 1

Object NO.
id_name :

pcode :

dcode :

Dow_start_end
lastnm :

firstnm :

dob :

dod :

origin :

notes :

Aaron
D
PAa

: @1979
Aaron
Paul
[1]

UN
Am

C 14

/
/*
/*
/*

A:********
Testing Program

for
Texas Instruments OOODB

/
*/
*/
*/

/* */
/* File Name: fetch gid.cc */
/* Date : 05/31/94 */
/* Modifing : 06/26/94 */
/* Version : 1 .

2

*/
/* */
/* Test ID No .

:

BDBF-007 */
/* Description

:

Retreive system-assigned Object Identifier (OID)

.

*/
/* Requirements OIDs are assigned to objects stored as persistent data*/
/* Expected Results: The OID is fetched and reported. */
/* */
/* C++ API commands tested: */
/* Ob j ectGID (char* name

)

*/
/* fetch(GID *gid) */
/* */
/* Testing Results : OK. OID retrieved and verified as having the */
/* given key. */
/* */
j ***** ***+********************/

#include
#include
ftinclude
#include
#include
#include

"OpenOODB .

h"

<libc . h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream . h>

#include "schema .

h"

fetch gid()

{

s_String* name;
int i ;

int number;
int total;
int blank;
char* key = new char [30]

;

char* movie = new char [40];

GID *pgid;
printf ("==Following is going to retrieve the data from movie DB==\n\n\n"

)

printf (" ==Name of the classes is People\n");
numbe r = 0

;

OODB *p_oodb = new OODB ("speckle : 8000")

;

name = new s_String [12]

;

People *p_people = new People;
for (i=0 ; i<=ll; i++) name [i] = new char[30];
p_oodb - > beginT ()

;

movie [0] = ' \ 0 ' ;

number = 1;
strcpy (movie

,
gen0id(1000 + number));

// Following is for testing the GID

while ((pgid= p_oodb- >Obj ectGID (movie)) != NULL)
{

if ((p_people = (People*) p_oodb- >fetch (pgid)) != NULL)
{

printf ("\n Object NO. %d \n", number);
p_people -> show ()

;

printf ("Hit any key to continue");
blank = getchar();

};

c 15

cout <<"\n Object ID %s "

;

cout << pgid;
number+t

;

strcpy (movie
,

gen0id(1000 + number));
};

cout <<"\n";
total = number- 1;
printf (

" \nThere are \"%d\" objects \n", total)

p_oodb - > abortT ()

;

}

* Result 007 *

*************+******

==Following is going to retrieve the data from movie DB==

==Name of the classes is People

Object NO. 1

Object ID is 60fa78

id_name :

pcode
dcode
Dow_start_end
lastnm :

firstnm :

dob :

dod :

origin :

notes :

Aaron
D
PAa

: @1979
Aaron
Paul
1923
1966
American

Object NO. 2

C 16

j * * * *

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

I * * *

ft***
Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

query_set . cc
05/31/94
06/26/94
1.2

Test ID No.
Description
Requirements

BDBF-009
Create a set of a class.
Create a collection of objects: set or list,

is necessary for executing Object Query Language.
Expected Results: A set of class is created.

This

C++ API commands used:
OQL
Set<myclass>
Set_myclass *set
set- >InsertMember (

)

set- >persist ("name_of_my_class_set "

)

populating 56 objects into the SET
OODB *my_oodb (hostname

:
port

)

beginTransaction (

)

commitTransaction (

)

persist ("my_obj ect "

)

persist ("my_oid"

)

Testing Results : OK. The set of class people created

* * /
*/
* /
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

* i

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
DECLARE
IMPLEMENT
IMPLEMENT

"OpenOODB .
h"

" Typeinfo .

h"

<libc . h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream . h>
" schema .

h"

dterator . h>
"List .h"
"Set .

h"

Set<People>
Set<People>
List<People>

createSetObj (FILE* fp,FILE* fp2 , s String* name)

{

OODB *p_oodbl = new OODB (" speckle : 8000 ")

;

char* people = new char [40];

int count, k2, kk;
int index = 0

;

int cl, ch

;

char* recBuf = new char [maxFieldWidth]
int numField ;

int recNum = 1 ;

int flag ;

int num;

char* movie = new char [maxFieldWidth]

;

People *p_jpeople [maxObjNum] ;

int len = 0

;

C 17

flag = 1;
numField = 0;
for (len=0; lencmaxObjNum; len++) p_people [len] = new People;

p_oodbl -> beginTO;
Set_People *set = new Set_People ()

;

printf ("\n j Set_of_people
j

= %d\n" , set- >Cardinality ());

Iterator k;
People 1;
for (set->First_Member (k) ; ! set- >Is_End_Of_Set (k) ; set- >Next_Member (k)

) {

1 = set- >Get_Member (k)

;

1 . show ()

;

}

//
//

while (((ch = getc(fp)) != EOF)&&(ch != '#')){};
fprintf(fp2, "\nRecord No. %d \n", recNum++)

;

num = 0

;

count = 0

;

while ((ch != EOF) j]

(count < 56)
)

{

while (ch != EOF)

{

recBuf [0] = ' \0
'

;

len = strlen (recBuf)

;

index = 0

;

movie [0] = ' \0
'

;

while ((ch !=)&&(ch !='\n')){
recBuf [index] = ch;
flag = 0;
ch = getc (fp)

;

index++

;

} :

if (flag == 0) {

len = strlen (recBuf)

;

recBuf [index] = '\0';
len = strlen (recBuf)

;

index++

;

fprintf(fp2, " % s ", fieldName [numField]

)

fprintf (fp2

,

recBuf

)

count = 0

;

if (numField < maxFieldNum - 1) {

while (recBuf [count] == '
'

)
(count++; }

;

kk = 0 ;

for(k2 = count ; k2 <len; k2++)

{

if (recBuf [k2] != ' ')
{

recBuf [kk++] = recBuf [k2]

;

};
recBuf [kk] =

'
\0

'

;

};

strcpy (name [numField] , recBuf)

;

numField++

;

}
else flag = 0;

if (ch =='#')
{

cl = getc (fp)

;

ch = cl;
if (cl ==' \n'

) {

numField = 0;
flag = 1;
movie [0] =

'
\0

'

;

p_people [num] ->create (name)

;

p_people [num] - >persist (name [0])

;

/* Can't just use p->per.., set->Insert Member(p), Set can not tell pi, p2 .

.

*/

C 18

I

set- >Insert_Member (*p_people [num])

;

p_people [num] ->show()

;

num++

;

fprintf(fp2, "\nRecord No. %d \n", recNum++)

;

while (((ch = getc(fp)) != EOF)&&(ch != '#')){};
} !

}
else ch = getc(fp);

// count++;
};

set->persist ("Set_of_People")

;

p_oodbl -> commitTO;
// p_oodbl -> abortT ()

;

return (-1)

;

}

* Result 009 *

********************+
Please see result 010.
The creation of a set is used for the Object Query Language.

C 19

/
/*
/*
/*
*/
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Testing Program
for

Texas Instruments OOODB

File Name
Date
Modif ing
Version

query_eql . cc
05/31/94
06/26/94
1.2

Test ID No. : BDBF-010.1
Description : Select objects using OQL where COMPARE_EQUAL
Requirements: Select-From-Where statement with equality.
Expected Results: Matched results are reported.

******* J
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

/* */
/* C+ + API commands used: */
/* OODB *my oodb (hostname

:
port

)

*/
/* beginTransaction (

)

*/
/* commitTransaction (

)

*/
/* persist ("my_object "

)

*/
/* persist ("my_oid"

)

*/
/* Query

{

*/
/* result = SELECT pp */
/* FROM People pp IN Set_of_People */
/* WHERE compare equl

(
pp.get id name () , KEY) ; */

/*
}

*/
/* */
/* Testing Results : OK. Matched results are reported. */
/* */
/**/

#include " new .
h"

#include "OpenOODB .

h"

#include " Typeinf o .
h"

#include <strings . h>
#include <iostream.h>
#include <Iterator . h>
#include "List .

h"

#include "Set .h"
#include "schema .h"

DECLARE Set<People>
IMPLEMENT Set<People>
IMPLEMENT List<People>

query_by_name (

)

char* KEY = new char [3 0]

;

Set_People *result ;

Iterator k;
People m;

KEY [0]
= ' \ 0 '

;

printf("You want to find the person's record, NAME equal : \n");
cin >>KEY;
Query

{

result = SELECT pp
FROM People pp IN Set_of_People
WHERE compare_equl

(pp .
get_id_name () , KEY) ;

/* Print the result of the query */

printf (
" \n\ " %s ' s\ " RECORD is : \n" , KEY);

if (result- >Cardinality () != 0) {

C 20

for(result- >First_Member (k) ; ! result- >Is_End_Of_Set (k)

;

result- >Next_Member (k)) {

m = result- >Get_Member (k)

;

m. show ()

;

} }

;

printf ("Total Records found = %d\n\n\n", result- >Cardinality ())

return 0

;

}

queryObj (

)

{

s_String* name

;

int i ;

int number;
char answer;
char* KEY = new char [30]

;

Iterator k;

p_oodbl -> beginT () ;

Set_People *set = (Set_People*) OpenOODB- >fetch ("Set_of_People ")

;

printf ("==Name of the classes is People \n");
number = 0

;

name = new s_String [12]

;

People *p_people = new People [1]

;

for (i = 0 ; i < = 1 1 ; i + +) name [i] = new char [30] ;

printf ("Do you want to retrieve OBJECTS? (y/n) \n");
cin >> answer;

while (answer == 'y')
{

printf ("Do you want to retrieve specific OBJECTS? (y/n) \n");
cin >> answer;

while (answer == 'y'){
printf ("Please

,
give the KEY: NAME of the PE0PLE\n");

cin >> KEY ;

if ((p_people = (People*) p_oodbl- >fetch (KEY)) != NULL)

{

ppeople -> show ()

;

/else ("The NAME: %s record is not exisiting in the DB . \n" , KEY)

printf ("Do you want to retrieve more OBJECTS? (y/n) \n");
cin >> answer;

};

printf (" \n\n\n")

;

printf ("Now we are using OQL to retrieve OBJECTS === \n");
browse_all_of_set ()

;

query_by_name ()

;

printf ("=== \n")

;

printf ("Do you want to quit the session (y/n) ? \n");
cin >> answer;

if (answer == 'y') answer = 'n';
else

{
printf ("\n\n \n\n");

answer = '
y

' ;

1 ;

printf (

" \n\n Successfully ! \n\n")

;

p_oodbl -> abortTO;
return (0)

;

C 21

* Result 010.1 *

You want to find the person's record, NAME equal

Display starting

id_name : Yang
pcode :

dcode :

Dow_start_end
lastnm :

firstnm :

dob :

dod :

origin :

notes :

871
GS-16

: @1928-1994
Yang
John
1901
UN
American
VIK

Hit any key to continue:

Total Records found = 1

C 22

j * * + *

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

j * * *

I**-********************
Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

Test ID No.
Description
Requirements

query les.cc
05/3 1794
06/26/94
1.2

Expected Results:

BDBF-010 .

2

Select objects using OQL where LESS.
Select-From-Where statement with inequality.

Less results are reported.

C++ API commands used:
OODB *my_oodb (hostname

:
port

)

beginTransaction (

)

commitTransaction (

)

persist ("my_object"

)

persist ("my_oid"

)

Query

{

result = SELECT pp
FROM People pp IN Set_of_People
WHERE compare_less (KEY, pp.get_dod(]) ;

Testing Results : OK. Correct records are selected.

j

* /
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
* /
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/**

j

#include
#include
#include
#include
#include
ttinclude
#include
#include
#include

"new .
h"

"OpenOODB .
h"

" Typeinfo .
h"

<strings . h>
<iostream.h>
<Iterator . h>
"List .

h"

"Set .h"
"schema .

h"

DECLARE Set<People>
IMPLEMENT Set<People>
IMPLEMENT List<People>

query less dod()

{

~ '

char* KEY = new char [30]

;

Set_People *result ;

Iterator k;
People m;

KEY [0]
= ' \ 0

'

;

printf("in terms of DATE of death \n",);

printf("You want to find the person who died before year \n");
cin >>KEY;

Query{
result = SELECT p_doda

FROM People p_doda IN Set_of_People
WHERE compare less (KEY, p doda.get dod ()) ;

}

printf ("\n*******Results the persons died before year %s ********\n",
KEY) ;

if (result- >Cardinality () != 0) {

C 23

for(result- >First_Member (k) ; ! result- >Is_End_Of_Set (k)

;

result- >Next_Member (k)) {

m = result- >Get_Member (k)

;

m . show ()

;

printfC'Hit any key to continue:");
getchar ()

;

} }

;

printf ("\nTotal records found = %d\n", result- >Cardmality ())

return 0;

/** Following is the query by origin. . . .
***/

queryObj (

)

{

s_String* name;
int i ;

int number
char answer;
char* KEY = new char [3 0];
Iterator k;

p_oodbl - > beginT ()

;

Set_People *set = (Set_People*) OpenOODB- >fetch ("Set_of_People")

;

printf ("==Name of the classes is People \n");
number = 0

;

name = new s_String [12]

;

People *p_people = new People [1]

;

for (i = 0 ; i < = 1 1 ; i + +) name[i] = new char [30];
printf ("Do you want to retrieve OBJECTS? (y/n) \n");
cin >> answer;

while (answer == 'y')
{

printf ("Do you want to retrieve specific OBJECTS? (y/n) \n");
cin >> answer;

while (answer == 'y'){
printf ("Please, give the KEY: NAME of the PEOPLE\n");
cin >> KEY ;

if ((p_people = (People*) p_oodbl- >fetch (KEY)) != NULL)

{

p_people -> show ()

;

}else ("The NAME: %s record does not exist in the DB.\n", KEY)

printf ("Do you want to retrieve more OBJECTS? (y/n) \n");
cin >> answer;

} ;

printf (
" \n\n\n")

;

printf ("Now we are using OQL to retrieve OBJECTS
query_less_dod ()

;

printf ("===
printf ("Do you want to quit the session (y/n) ? \n");

cin >> answer;
if (answer == 'y') answer = 'n';
else

{
printf ("\n\n \n\n");

answer = 'y';

=== \n")

;

=== \n")

;

printf (

" \n\n Successfully
!
\n\n"

)

p_oodbl -> abortTO;
return (0)

;

C 24

* Result 010.2 ****************
You want to find the person who died before

1995

*******Results the persons died before year
Display starting

id_name
pcode
dcode
Dow_start_end
lastnm :

firstnm :

dob :

dod :

origin :

notes :

Aaron
D
PAa

: @1979
Aaron
Paul
tl]

1994
Am

Hit any key to continue:

Total Records found = 1

year

1995 ********

C 25

/****
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

j * * * *

Testing Program

for
Teax Ins . OOODB

File Name
Date
Modif ing
Version

Test ID No.
Description
Requirements

query_gre . cc
05/31/94
06/26/94
1.2

BDBF-010 .

3

Select objects using OQL where GREATER.
Select-From-Where statement with inequality.

Expected Results: Greater results are reported.

C++ API commands used:
OODB *my_oodb (hostname

:
port)

beginTransaction (

)

commitTransaction (

)

persist ("my_obj ect "

)

persist ("my_oid"

)

Query{
result = SELECT pp
FROM People pp IN Set_of_People
WHERE compare greater (KEY, pp.get dob ()) ;

}

Testing Results : OK. Correct records are selected.

******* j
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

******* j

#include
include
#include
#include
#include
#include
#include
#include
#include

"new .
h"

"OpenOODB.h"
" Typeinfo .

h"

<strings . h>
ciostream . h>
dterator . h>
"List .

h"

"Set .h"
"schema .

h"

DECLARE Set<People>
IMPLEMENT Set<People>
IMPLEMENT List<People>

query greater dob (

)

{

char* KEY = new char [30];
Set_People *result ;

Iterator k;
People m;

KEY [0] = ' \0'
;

printf("in terms of DATE of birth \n",);
printf("You want to find the person who were born after the year of \n")

cin >>KEY;
Query!
result = SELECT p_doba

FROM People p_doba IN Set_of_People
WHERE compare greater

(p doba.get dob () , KEY) ;

}

"

printf ("\n*******Results the person were born after the year %s

C 26

******\n ", KEY)

;

if (result- >Cardinality () != 0) {

for(result- >First_Member (k) ; ! result- >Is_End_Of_Set (k)

;

result- >Next_Member (k)) {

m = result- >Get_Member (k)

;

m . show ()

;

printf ("Hit any key to continue:");
getchar ()

;

} } ;

printf ("Total records found = %d\n", result- >Cardinality ());
return 0

;

eryObj (

)

s_String* name;
int i ;

int number;
char answer;
char* KEY = new char [3 0]

;

Iterator k;

p_oodbl -> beginT ()

;

Set_People *set = (Set_People*) OpenOODB->fetch ("Set_of_People")

;

printf (" ==Name of the classes is People \n");
number = 0;
name = new s_String [12]

;

People *p_people = new People [1] ;

for (i=0 ; i<=ll; i++) name [i] = new char [3 0];
printf ("Do you want to retrieve OBJECTS? (y/n) \n");
cin >> answer;

while (answer == 'y')
{

printf ("Do you want to retrieve specific OBJECTS? (y/n) \n");
cin >> answer;

while (answer == 'y'){
printf ("Please

,
give the KEY: NAME of the PEOPLE\n");

cin >> KEY ;

if ((p_people = (People*) p_oodbl- >fetch (KEY)) != NULL)

{

p_people -> show ()

;

}else ("The NAME: %s record is not exisiting in the DB.\n", KEY)

printf ("Do you want to retrieve more OBJECTS? (y/n) \n");
cin >> answer;

};

printf (

" \n\n\n")

;

printf ("Now we are using OQL to retrieve OBJECTS === \n");
query_greater_dob ()

;

printf ("=== \n")

;

printf ("Do you want to quit the session (y/n) ? \n");
cin >> answer;

if (answer == 'y') answer = 'n';
else

{
printf ("\n\n \n\n");

answer = ' y'

;

!;
printf ("\n\n Successfully! \n\n")

;

p_oodbl -> abortT ()

;

return (0)

;

C 27

* Result 010.3 *

it*****************************

In terms of DATE of birth
You want to find the person who were born after year

1945

*******Results the persons were born after the year 1945 ********
Display starting

id_name :

pcode :

dcode :

Dow_start_end
lastnm :

firstnm :

dob :

dod :

origin :

notes :

Zhang
CD
YMZ

: @1980-1992
Zhang

YiMou
1950
UN
American
Lw(Gong Li)

Hit any key to continue:

Display starting

id_name :

pcode :

dcode :

Dow_start_end
lastnm :

firstnm :

dob :

dod :

origin :

notes :

Yule
D
PYu

: @1993
Yule
Paul
1954
UN
Br
Ty (TV)

Total Records found = 2

C - 28

/**********************************1
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

File Name
Date
Modif ing
Version

Test ID No.
Description
Requirements

******************* + ******************* j
*/Testing Program

for
Texas Instruments OOODB

query. cc
05/31/94
06/26/94
1 .

2

BDBF-010 .4

Retrieving objects by OQL with AND.
Select-From-Where statement with conjunction.

Expected Results : Matched results are reported.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* */
/* C+ + API commands used: */
/* OODB *my_oodb (hostname

:
port

)

*/
/* beginTransaction (

)

*/
/* commitTransaction (

)

*/
/* persist ("my object") */
/* persist ("my oid") */
/* Query

{

*/
/* result = SELECT pp */
/* FROM People pp IN Set of People */
/* WHERE compare equl (KEY, pp.get dob ()) && */
/* compare equl(KEYl, pp.get originO) */
/*

}
*/

/* */
/* Testing Results : OK. Matched results are reported. */
/* */
/**/

#include "new .

h"

#include "OpenOODB .
h"

#include " Typeinf o .
h"

#include <strings . h>
#include <iostream. h>
#include <Iterator . h>
#include "List .

h"

#include "Set .h"
#include "schema .

h"

DECLARE Set<People>
IMPLEMENT Set<People>
IMPLEMENT List<People>

query equl dob and origin ()

l

char* KEY = new char [30]

;

char* KEY1 = new char [30];
Set People *result;
Iterator k;
People m;

KEY [0] = '\0'

;

printf

(

" \n\n" ,)

;

printf

(

"You want to find the person who were born at the year of \n") ;

cin >>KEY;
printf("And his/her origin is \n");
cin >>KEY1;

Query

{

result = SELECT p_doby
FROM People p_doby IN Set_of_People
WHERE compare_equl (KEY, p_doby

.
get_dob ()) &&

compare_equl (KEY2
,
p_doby

.
get_origin ()

)

C 29

}

printf ("\n*******Results the person were born at the year %

s

********\n ..

(KEY);

printf (
" \n* ******And his/her origin is % s ********\n", KEY1);

if (result- >Cardinality () != 0) {

for(result- >First_Member (k) ; ! result- >Is_End_Of_Set (k)

result- >Next_Member (k)) {

m = result ->Get_Member (k)

;

m . show ()

;

printf ("Hit any key to continue:");
getchar ()

;

})

;

printf ("Total records found = %d\n", result- >Cardinality ());
return 0

;

}

it***********************************
Results 10.4 *

+ + * +*** +***'*•****'**

You want to find the person who were born at the year of
1924

And his/her origin is
Po

*******Results the person were born at the year 1924 ********
*******And his/her origin is Po

Display starting

id_name :

pcode
dcode
Dow_start_end
lastnm :

firstnm :

dob :

dod :

origin :

notes :

Zanussi
D
KZs

: @1985
Zanussi

Krystof
1924
1995
Po

C 30

I * * *

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/ * * * *

Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

query or.cc
05/31/94
06/26/94
1.2

BDBF-010 .

5

Select objects using OQL qualified with OR.
Select-From-Where statement with disjunction.

Test ID No.
Description
Requirements
Expected Results: Matched results are reported.

C++ API commands used:
OODB *my_oodb (hostname

:
port

)

beginTransaction (

)

commitTransaction (

)

persist ("my_object"

)

persist ("my_oid"

)

Query

{

result = SELECT pp
FROM People pp IN Set_of_People
WHERE compare_equl (KEY, pp.get_dob()) OR

compare_equl (KEY1
, pp .

get_origin ()

)

Testing Results : OK. Correct results are reported.

j

* /
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/

#include
#include
#include
ttinclude
#include
#include
#include
#include
#include
DECLARE
IMPLEMENT
IMPLEMENT

"new .

h"

"OpenOODB .

h"

" Type inf o .
h"

<strings . h>
<iostream.h>
dterator . h>
"List .h"
"Set .h"
" schema .

h"

Set<People>
Set<People>
List<People>

query less greater dob (

)

{

~ "

char* KEY = new char [30]

;

char* KEY1 = new char [3 0]

;

Set_People *result;
Iterator k;
People m;
KEY [0] = ' \ 0

'

;

printf (

" \n\n" ,)

;

printf("You want to find the person who were born at the year of
cin >>KEY;
printf ("OR his/her origin is \n");
cin >>KEY1;

Query

{

result = SELECT p_doby
FROM People p_doby IN Set_of_People
WHERE compare_equl (KEY, p_doby

.
get_dob ()) OR

compare equl(KEYl, p doby.get dob ()

)

;

}

printf (
" \n*******Results the person were born at the year %£

\

n », KEY) ;

\n"
:

C 31

printf ("\n*******Or his/her origin is \n", KEY1);
if (result- >Cardinality () != 0) {

for(result- >FirstJMember (k) ; ! result- >Is_End_Of_Set (k)

result- >Next_Member (k)
) {

m = result- >Get_Member (k)

;

m . show ()

;

printf ("Hit any key to continue:");
getchar ()

;

}) ;

printf ("Total records found = %d\n", result- >Cardinality ());
return 0;

}

* Result 10.05 *

**

You want to find the person who were born at the year of
1915

Or his/her origin is
Br

*******Results the person were born at the year 1915 ********
******Or his/her origin is Br

Display starting
id_name : T . Young
pcode : D
dcode : TYg
Dow start end : @1948-1980
lastnm
firstnm
dob
dod
origin
notes

Young
Terence
1915
1990
Br

Hit any key to continue:
Display starting

id_name : Yule
pcode : D
dcode : PYu
Dow_start_end : @1993
lastnm : Yule
firstnm : Paul
dob : 1916
dod : 1991
origin : Br
notes : Ty(TV)

Hit any key to continue:
Display starting

id_name : Asquith
pcode :

dcode :

Dow_start_end
lastnm
firstnm
dob
dod
origin
notes

D
AA

: 1928
Asquith
Anthony 'Puffin'
1902
1968
Br

Total records found = 3

C 32

j * * * *

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

j * * * *

**
Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

update . cc
05/31/94
06/26/94
1 .

2

Test ID No.
Description
Requirements

BDBF-011
Read, modify and write objects.
Known objects to be read, its values can be
modified and write back to persistent store.

Expected Results: Objects can be updated.

C++ API commands used:
OODB *my_oodb (hostname

:
port)

beginTransaction (

)

commitTransaction (

)

fetch ("my_object "

)

persist ("my_object "

)

persist ("my_oid"

)

Testing Results : OK. Object read, updated, and stored back.

**

****** j
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

j

#include
#include
#include
#include
#include
#include
#include
#include

" OpenOODB .
h"

" Type inf o .
h"

<libc . h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream . h>
"schema .h"

OODB *p_oodbl = new OODB (" speckle : 8000 ")

;

void People :: update value (char *key)

{

char value [maxFieldWidth]

;

printf ("\n\n")

;

printf ("Editing the Value \n"),-
printf ("Original Record Key is \n\n"),-
printf ("id_name : %s\n\n", id_name)

;

strcpy(key, id_name)

;

printf ("Updating the record \n\n\n"
printf ("Field (1)

:
pcode :

printf (" Input New Value :

scanf (
" %s", pcode)

;

printf ("\nField (2): dcode :

printf (" Input New Value :

scanf (" % s" , dcode);
printf (" \nField (3): Dow_start_end
printf (" Input New Value :

scanf (" %s", dow_start_end);

printf (" \nField (4): last_name
printf (" Input New Value :

scanf (" %s", last_name);
printf (" \nField (5): first_name
printf (" Input New Value :

scanf (" %s", first_name);

printf (" \nField (6) : dob :

printf (" Input New Value :

%s\n"

,

\n") ;

pcode) ;

%s\n
\n") ;

"
, dcode)

;

\n") ;

%s\n"

,

dow start end

\n") ;

%s\n"

,

last name)

\n") ;

%s\n"

,

first name

%s\n"

,

\n") ;

dob) ;

C 33

scanf (" %s", dob);

printf

(

"\nField (7) : dod : %s\n"

,

dod
printf

(

"Input New Value : \n") ;

scanf (

"

printf

(

% s " , dod
"\nField (

) ;

8) : origin : %s\n"

,

origin
printf

(

"Input New Value : \n") ;

scanf (

"

printf

(

%s", origin);

"\nField (9) : notes : %s\n"

,

notes
printf

(

"Input New Value : \n") ;

scanf (" %s", notes);

update by key()

{

" "

int number;
char answer;
char* key = new char [maxFieldWidth]

;

char* people = new char [maxFieldWidth]

;

People *p_people = new People;

printf ("==Following is going to retrieve the data from people DB==\n\n\n")
printf (" ==Name of the classes is People \n");
number = 0

;

p_oodbl - > beginT ()

;

printf ("Do you want to retrieve and update OBJECTS? (y/n) \n");
cin >> answer;
key [0]

= ' \ 0
'

;

while (answer == 'y'){
printf ("Please, give the key: NAME of the PEOPLE\n");
cin >> key ;

if ((p_people = (People*) p_oodbl- >fetch (key)) != NULL)
{

p_people -> show ()

;

p_people -> update_value (people)

;

p_people -> show ()

;

}
else ("The NAME: %s record is not exisiting in the DB.\n", key);

printf ("Are you sure all of the values are right? (y/n) \n");
cin >> answer;
if (answer == 'y') p_people- >persist (people) ; else printf (" You can

modify it later on !!\n");
printf ("Do you want to retrieve more OBJECTS? (y/n) \n");
cin >> answer;

};

p oodbl -> commitTO;
}

"

it***************
* Result Oil *

it***********************************

==Following is going to retrieve the data from people DB==

==Name of the classes is People
Do you want to retrieve and update OBJECTS? (y/n)

y
Please, give the key: NAME of the PEOPLE
Yang
<prexh3> Display starting

id_name : Yang
pcode : 871
dcode : TAb
Dow_start_end : @1977
lastnm : Abduladze
firstnm : Tengiz

C 34

UN
Ru
Or (Georgian)

dob
dod
origin
notes

Editing the Value
Original Record Key is

id_name : Yang

Updating the record

Field (1)
:
pcode : 871

Input New Value :

871

Field (2) : dcode : TAb
Input New Value :

G8-16

Field (3) : Dow_start_end : @1977
Input New Value :

•1928-1994

Field (4) : last_name : Abduladze
Input New Value :

Yang

Field (5) : first_name : Tengiz
Input New Value :

Tengiz

Field (6) : dob :

Input New Value :

1900

Field (7) : dod : UN
Input New Value :

DM

Field (8) : origin : Ru
Input New Value :

American

Field (9) : notes : Or (Georgian)
Input New Value :

Very Important
<prexh3> Display starting

id_name :

pcode :

dcode :

Dow_start_end
lastnm :

firstnm :

dob :

dod :

origin :

notes :

Yang
871
GS-16

: @1928-1994
Yang

Tengiz
1900
UN
American
Very

Do you want to retrieve more OBJECTS? (y/n)
n

Successfully

!

C 35

I * * * * *

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

/*

I * * * * *

it***
Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

pinfo . cc
05/31/94
06/26/94
1.2

Test ID No. : BDBF-012
Description : Retrieving a specific class from dictionary
Requirements: The "Type" information based upon the defined

schema exist in the dictionary.
Expected Results: The type information for a given class is

reported.

C++ API commands used:
TYPEINFO_LIST *list = ty_base . BaseList (

)

MEMBER_L1ST *mlist = ty . MemberList (

)

Testing Results : OK. The name of class and its attributes and
type information are reported.it**

* * * * i
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

* * * * i

#include
#include
#include
#include
ttinclude
#include
#include

"OpenOODB .
h"

" Typeinfo .
h"

clibc . h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream . h>

#include "schema. h"

OODB *p_oodb = new OODB ("speckle : 8000")

;

retrieveBaseinfo (

)

{

int i ;

int number;
char answer;
char* key = new char [30];

numbe r = 0

;

People *p_people = new People;
Actor *p_actor = new Actor;
p_oodb - > beginT ()

;

TYPEINFO &ty = p_people- >oodb_typeof ()

;

TYPEINFO &ty_base = p_actor- >oodb_typeof ()

;

MEMBER_LIST *mlist = ty . MemberList ()

;

if (mlist == NULL) printf(" List is NULL!!\n");

for(; mlist !=NULL; mlist = mlist- >Next ()

)

printf("%s: %s\n", mlist- >Name () , mlist- >Type ())

;

printf (

" \n\n Successfully
! \n\n")

;

p_oodb -> abortT();
return (0)

;

}

C 36

******+******
* Result 012 *

==Name of the classes is People
{Type Poeple : 64 bytes, defined in file . /schema. h at line 51
Members of class People:
id_name : t8s_String
pcode : t8s_String
dcode : t8s_String
dow_start_end : t8s_String
last_name: t8s_String
first_name: t8s_String
dob: t4year
dod: t4year

}

C 37

/******•**/
/* Testing Program */
/* for */
/* Texas Instruments OOODB */
/* */
/* File Name: dictionary. cc */
/* Date : 05/31/94 */
/* Modifing : 06/26/94 */
/* Version : 1 .

2

*/
/* */
/* Test ID No. : BDBF-013 */
/* Description : Retrieving a class schema and all its sub-class */
/* schema from dictionary. */
/* Requirements

:

All of class definition and its sub-class type and */
/* attributes are reported. */
/* Expected Results: The class and sub-classes' name and type */
/* information are reported. */
/* */
/* C++ API commands used: */
/* */
/* TYPEINFO &tyinfo = p^people- >oodb_typeof ()

;

*/
/* tyinf

o

describeall ()

;

*/
/* */
/* Testing Results : OK. The class PEOPLE and its sub-classs ACTOR */
/* meta information are reported. */
/* */
/**/
#include
#include
ttinclude
#include
#include
#include
#include
#include

" OpenOODB .
h"

" Type inf o .
h"

<libc . h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream . h>
" schema .

h"

OODB *p_oodb = new OODB ("speckle : 8000")

;

getinfo (

)

{

// s_String* name

;

int i ;

int num, number;
int start num;
int total

;

char answer

;

int blank;
char* key = new char [3 1

char* movie = new char

printf (" ==Following is going to retrieve the data from movie DB==\n\n\n")
printf (" ==Name of the classes is People\n");
People *p_people = new People;
p_oodb - > beginT ()

;

number = 0;
TYPEINFO Sctyinfo = p_people- >oodb_typeof ()

;

cout << "\n ***** tyinf o . describeall () ; \n
tyinfo . describeall ()

;

num = number;
start_num = 1

;

printf ("Do you want to retrieve OBJECTS? (y/n) \n")

;

cin >> answer ;

key [0]
= ' \ 0

'

;

while (answer == 'y')
{

printf ("\nThere are \"%d\" objects \n" , total);

C 38

\n") ;printf("\nDo you want them all?(y/n)
cin >> answer;
if (answer ! = ' y'

) {

printf ("==How many objects do you want to retrieve? \n");
cin >> num ;

cout << "==Starting Object No.: "

;

cin >> start_num;
cout << "\n" << flush;
num = num + start num;
}

»•

for (number = start_num; number < num ; number++)

{

movie [0] = ' \0
'

;

strcpy (movie
,

genOid (number + 1000));
if ((p_people = (People*) p_oodb- >fetch (movie)) != NULL)

{

printf ("\n Object NO. %d \n", number);
p_people -> show ()

;

printf ("Hit any key to continue");
blank = getchar();

}; /* end of FOR */
cout<< "Do you want to quit the session (y/n) ? \n" ;

cin >> answer;
if (answer == 'y') answer = 'n';
else

{
printf ("\n\n \n\n");

answer = 'y';

p_oodb -> commitTO;
printf ("\n\n Successfully

!
\n\n")

;

}

* Result 013 ********************
Actor is Derived from People.
*** tyinf o . describeall ()

;

{Type Actor: 88 bytes, defined in file . /schema. h at line 76
Derived from: public People

{Type People: 64 bytes, defined in file . /schema. h at line 51
Members of class people

:

id_name : t8s_String
pcode : t8s_String
dcode : t8s_String
dow_start_end : t8s_String
last_name : t8s_String
first_name: t8s_String

Members of class Actor:
Stagename : t8s_String
Sex: t6gender

C 39

/**/
/* Testing Program */
/* for */
/* Texas Instruments OOODB */
/* */
/* File Name: inherit2 . cc */
/* Date : 05/31/94 */
/* Modifing : 06/26/94 */
/* Version : 1 .

2

*/
/* */
/* Test ID No. : BDBF-015 */
/* Description : Create a class and a sub-class and allow all the */
/* attributes to be inherited to the sub-class. */
/* Requirements

:

The attributes from the super-class should be */
/* inherited to the sub-class. */
/* Expected Results: All the attributes are inherited in the sub- */
/* class

.

*/
/* */
/* C++ API commands used: */
/* OODB *my oodb (hostname

:
port) */

/* beginTransaction (

)

*/
/* commitTransaction (

)

*/
/* persist ("my object") */
/* */
/* Testing Results : Using C++ constructor, this test cannot be */
?* committed. Failure reported as Bus error. */

/**/

#include
#include
#include
#include
#include
#include
#include
tfinclude

" OpenOODB .
h"

" Type inf o .

h"

<libc . h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream . h>
"schema .

h"

OODB *p_oodbl = new OODB ("speckle : 8000 ")

;

inheritanceFail (

)

{

s_String* name

;

char* people = new char [maxFieldWidth]

;

char* actor = new char [maxFieldWidth]

;

char* answer;
int num, i;

name = new s_String [maxFieldNum]

;

answer = new char [3]

;

answer [0] = ' \ 0 '
;

num = 0

;

p_oodbl -> beginTO;

for (i=0 ; i<=maxFieldNum; i++) name [i] = new char [maxFieldWidth]

;

printfCDo you want to set up PEOPLE obj ects? (Y/N) \n");
while ((answer [0] = getcharO) == 'y')

{

get_data (name , people);
People p_people (name [0] , name [1] , name [2] , name [3], name [4], name [5],

name [6] , name [7] , name [8] , name [9])

;

p_people . show ()

;

cout << " Is " << name [0] << " a Actor? (Y/N) "

;

cin >> answer;
if (answer [0] == 'y')

{

/

/

Please input the Actor part
get_actor (name , actor)

;

C 40

name [5]

,

Actor p_actor (name [0] , name[l], name [2] , name [3], name [4],
name [6], name [7], name [8], name [9], name [10],
name [11] , name [12], name [13], name [14], name [15]);

p_actor
.
persist (actor)

;

p_actor . show ()

;

}
else

pjieople .persist (people) ;

num++

;

/*** Actor key is Stagename ****/
printf("\n Do you want to set up more obj ects? (Y/N) \n");
answer [0] =' \0

'

;

getchar ()

;

} ;

printf(" \nDisplay ending \n\n");
p_oodbl -> commitTO;
printf(" New DB has been commited Successfully

! \n\n")

;

* Result 15 *it***
Commit failed, bus error.

C 41

/****
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

j * * * *

Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

pinfo . cc
05/31/94
06/26/94
1.2

Test ID No. : BDBF-016
Description : Create a sub-class which is multiply inherited

from two super-classes. These two super-classes
are, in turn derived from the same super-super-class

Requirements: The attributes from both super-classes should be
inherited to the sub-class.

Expected Results: The dictionary should content all the class
relationships and attribute type information

C++ API commands used:
People *p_ptr = p_actor;

TYPEINFO &tyinfo = p_actor- >oodb_typeof ()

;

TYPEINFO &type_b = p_ptr- >oodb_typeof ()

;

tyinfo . describeall ()

;

Testing Results : The dictionary entry for ADIRECTOR contains all
the attributes inherited from ACTOR and DIRECTOR
but attributes inherited from super-super-class
PEOPLE are duplicated.I!:

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
* /
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

#include
ttinclude
#include
#include
#include
#include
#include
#include

"OpenOODB .

h"

" Type info .
h"

clibc . h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream . h>
"schema .

h"

OODB *p_oodb = new OODB ("speckle : 8000");

retrieveinfo (

)

{

int i ;

int number;
char answer;
char* key = new char[30];

number = 0;
People *p_people = new People [1]

;

Actor *p_actor = new Actor [1]

;

ADirector *p_adirector = new ADirector [1]

;

p_oodb - > beginT ()

;

TYPEINFO &tyinfo = p_adirector- >oodb_typeof ()

;

printf (
" ***** tyinfo . describeall (); \n ");

tyinfo . describeall () ;

printf ("\n\n Successfully
! \n\n")

;

p_oodb - > abortT ()

;

return (0)

;

}

C 42

* Result 16 *

Following INFO from "TYPEINFO &tyinfo = p_adctor - >oodb_typeof ()

;

"

{Type ADirector: 124 bytes, defined in file . /schema. h at line 156
Derived from: public Actor, public Director
{Type Actor: 88 bytes, defined in file . /schema. h at line 78
Derived from: virtual public People
{Type Poeple : 56 bytes, defined in file . /schema. h at line 57
Members of class people:
id_name: [q=V2 type=t8s_String]
pcode: [q=V2 type=t8s_String]
lastnm: [q=V2 type=t8s_String]
firstnm: [q=V2 type=t8s_String]

Members of class Actor:
stagename : [q=V2 type=t8s_String]
roles: [q=V2 type8s_String]

i

{Type Director: 84 bytes, defined in file . /schema. h at line 137
Derived from: virtual public People
{Type People: 56 bytes, defined in file . /schema. h at line 57
Members of class people:
id_name : [q=V2 type=t8s_String]
pcode: [q=V2 type=t8s_String]
lastnm: [q=V2 type=t8s_String]
firstnm: [q=V2 type=t8s_String]

i

Members of class Director:
Company: [q=V3 type=t8s_String]
Movies: [q=V3 type=t8s_String]

}

Members of class Adirector:
stagecode : [q=V3 type=t8s_String]

}

C 43

J * * *

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

j
* * *

**/

File Name
Date
Modif ing
Version

Test ID No.
Description
Requirements

Testing Program
for

Texas Instruments OOODB

versionl . cc
05/31/94
06/26/94
1.2

BDBF-019
Create a new version from the class PEOPLE.
Objects exist to be updated to create a new version

Expected Results: Display the new version.

C++ API commands used:
OODB *my_oodb (hostname

:
port

)

p_p>eople- >AddExtension ("V. 0 . 2 "
) ;

beginTransaction (

)

commitTransaction (

)

persist ("my_object"

)

Testing Results : OK. New version exist.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/**
/

#include
#include
ttinclude
include
#include
#include
#include
#include

"OpenOODB .

h"

" Type info .

h"

clibc . h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream.h>
"schema .

h"

OODB *p_oodb3 = new OODB ("speckle : 8000 ")

;

versionAdd (

)

{

s_String* name;
char* people = new char [maxFieldWidth]

;

char* actor = new char [maxFieldWidth]

;

char* answer;
int num, i;
People *p_people = new People;
Actor *p_actor = new Actor;
name = new s_String [maxFieldNum]

;

answer = new char [3];
answer [0] = ' \0

'

;

num = 0

;

p_oodb3 - > beginT ()

;

p_people- >AddExtension ("V . o .

2
")

;

// create objects with Version "V.0.2"

for (i=0; i<=maxFieldNum; i++) name[i] = new char [maxFieldWidth]

;

printf("Do you want to set up PEOPLE obj ects? (Y/N) \n");
while ((answer [0] = getcharO) == 'y')

{

get_data (name
, people);

p_jpeople- >create (name) ;

// pj>eople->persist(people);
p_people- >show ()

;

cout << " Is " << name [0] << " a Actor? (Y/N)";

C 44

cin >> answer;
if (answertO] == 'y')

{

get_actor (name , actor);
p_actor->create (name)

;

p_actor- >persist (actor) ;

p actor->show()

;

} ;

p_j?eople- >persist (people)

;

num++

;

/*** Actor key is Stagename ****/
printf("\n Do you want to set up more objects? (Y/N) \n")
answer [0] =' \0'

;

cfetchar () ;

printfC \nDisplay ending \n\n");
p_oodb3 -> commitTO;
printfC New DB has been commited Successfully

!
\n\n")

* Result 19 *************
Version "V.0.2":

id_name :

pcode :

dcode :

Dow_start_end
last_name
first_name
dob :

dod :

origin :

notes :

Chris
875
DP-1

: 1912-1999
: Chris
: John
1900
1999
American
PP

C 45

'********+*******************

/*
/*
/*
/*
/*
/*
/*
/*
/*

/

Testing Program
/* for */
/* Texas Instruments OOODB */
/* */
/* File Name: version . cc */
/* Date : 05/31/94 */
/* Modifing : 06/26/94 */
/* Version : 1 .

2

*/
/* */
/* Test ID No. : BDBF-020 */
/* Description : Fetch newly versioned objects and show version. */
/* Requirements

:

Create a new version (do Test Number BDBF-19) and */
/* retrieve the newly versioned object and display */
/* the new version number. */

Expected Results: Objects with new version indication.

C++ API commands used:
OODB *my_oodb (hostname

:
port

)

beginTransaction (

)

p_people- >ShowExtensions ()

;

Testing Results : OK. Object with new version indication.

*/
*/
*/
*/
*/
*/
*/
*/
*/

**.

#include
#include
#include
#include
#include
#include
#include

"OpenOODB .

h"

" Typeinfo .

h"

clibc .h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream . h>

#include "schema .

h"

OODB *p_oodbl = new OODB ("speckle : 8000")

;

versionShow (

)

{

s_String* name;
int i ;

int number;
char answer;
char* key = new char [30];

printf ("==Following is going to retrieve the data from people DB==\n\n\n")
printf ("==Name of the classes is People \n");
numbe r = 0

;

name = new s_String [12]

;

People *p_people; // = new People;
// Actor *p_actor; = new Actor;

p_oodbl -> beginTO;

for (i = 0 ; i < = 1 1 ; i + +) name [i] = new char [3 0];
printf ("Do you want to retrieve PEOPLE OBJECTS? (y/n) \n");
cin >> answer;
key [0] = ' \0

'

;

while (answer == ' y'

)

{

printf ("Do you want to retrieve specific OBJECTS? (y/n) \n");
cin >> answer;

while (answer == ' y'){
printf ("Please, give the key: NAME of the PEOPLE\n");
cin >> key ;

C 46

cout <<" oodb_dd_instance- >describe () ; \n" << flush;
if ((p_people = (People*) p_oodbl- >fetch (key)) != NULL)

{

p_j?eople -> show () ;

p_people- >ShowExtensions ()

;

}
else

{

printf ("Sorry , %s is not existing in DB ! \n", key); };
printf("Do you want to retrieve more OBJECTS? (y/n) \n")

cin >> answer;
} ;

printf ("Do you want to quit the session (y/n) ? \n");
cin >> answer;

if (answer == 'y') answer = 'n';
else

{
printf ("\n\n \n\n");

answer = ' y'

;

i;
printf (

" \n\n Successfully! \n\n")

;

p_oodbl -> abortT ()

;

return (0)

;

}

it****************
Result 20 *****************•**

Please, give the key: NAME of the PEOPLE
Chris

Display:

id_name :

pcode :

dcode :

Dow_start_end
last_name
f irst_name
dob
dod
origin
notes
Version : V . 0 .

2

Chris
871
DP-1

: 1912-1999
Chris

John
1900
1999
American
PP

- 47C

j * * * * *

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/

Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

version_old . cc
05/31/94
06/26/94
1 .

2

Test ID No. : BDBF-021
Description : Fetch the old versioned objects which have been

newly versioned.
Requirements: Create a new version (do Test Number BDBF-19) and

retrieve the old versioned object.
Expected Results: Objects with old version indication.

C++ API commands used:
OODB *my_oodb (hostname

:
port

)

beginTransaction (

)

p_people- >ShowExtensions ()

;

Testing Results : NO. Cannot fetch the old versioned objects.

/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/*** /

#include
#include
#include
#include
#include
#include
#include

" OpenOODB .
h"

"Typeinfo .

h"

clibc .h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream. h>

#include "schema .h"

OODB *p_oodbl = new OODB ("speckle : 8000")

;

versionShow (

)

{

s_String* name;
int i ;

int number;
char answer;
char* key = new char[30];

printf (" ==Following is going to retrieve the data from people DB==\n\n\n")
printf (" ==Name of the classes is People \n");
number = 0

;

name = new s_String [12]

;

People *p_people; // = new People;
// Actor *p_actor; = new Actor;

p_oodbl -> beginT ()

;

for (i = 0 ; i < = 1 1 ; i + +) name [i] = new char[30];
printf ("Do you want to retrieve PEOPLE OBJECTS? (y/n) \n");
cin >> answer;
key [0] = ' \0 '

;

while (answer == 'y')
{

printf ("Do you want to retrieve specific OBJECTS? (y/n) \n");
cin >> answer;

while (answer == 'y'){
printf ("Please, give the key: NAME of the PEOPLE\n");
cin >> key ;

C 48

cout <<" oodb_dd_instance- >describe () ; \n" << flush;
if ((p_people = (People*) p_oodbl- >fetch (key)) != NULL)

{

p_people -> show ()

;

p_people- >ShowExtensions ()

;

}
else

{

printf ("Sorry , %s is not existing in DB
!

\n", key); };
printf("Do you want to retrieve more OBJECTS? (y/n) \n")

cin >> answer;
} ;

printf ("Do you want to quit the session (y/n) ? \n");
cin >> answer;

if (answer == 'y') answer = 'n';
else

{
printf ("\n\n \n\n");

answer = 'y';

I:
printf ("\n\n Successfully ! \n\n")

;

p_oodbl -> abortT ()

;

return (0)

;

}it*
* Result 21 *

The old version cannot be fetched.

C 49

/****
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/ * * * *

******+**+**+************************
Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

pfetch_conl . cc
05/31/94
06/26/94
1.2

Test ID No. : BDBF-022
Description : Test for concurrency control when both clients

are trying to read the same object.
Requirements: Start running T1 : a "fetch object" program first, do

not commit but, at another window initiate T2 : another
"fetch object" program. Commit T2 then Tl.

Expected Results: No standard way for concurrency control.
Expect both programs can read the data, but one
of the transaction will be locked at commit time.

C++ API commands used:
beginTransaction (

)

commitTransaction (

)

fetch ("sequence_No"

)

abortTO

Testing Results : Both Tl and T2 able to read object, but Tl
cannot be committed.

***********************•******•*******

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

#include "OpenOODB .

h"

#include " Typeinf o .
h"

#include <libc . h>
#include <stdio . h>
#include <stdlib . h>
#include <strings . h>
#include <iostream . h>

#include "schema.h"

browse (

)

{

s_String* name

;

int i ;

int num, number;
int start_num;
int total;
char answer,

-

int blank;
char* key = new char [3 0]

;

char* movie = new char[40];

printf ("==Following is going to retrieve the data from movie DB==\n\n\n")
printf ("==Name of the classes is People\n");
number = 0;
OODB *p_oodbl = new OODB ("speckle : 8000")

;

name = new s_String [12]

;

People *p_people;
for (i = 0; i < = 1 1 ; i + +) name [i] = new char [3 0];
p_oodbl -> beginTO;

movie [0] = ' \0
'

;

number = 1;
strcpy (movie

,
gen0id(1000 + number));

while ((p_j?eople = (People*) p_oodbl- >fetch (movie)) != NULL)
{

C 50

number++

;

strcpy (movie, gen0id(1000 + number));

total = number- 1;
num = number;
start_num = 1;

printf("Do you want to retrieve OBJECTS? (y/n) \n");
cin >> answer ;

key [0]
= ' \ 0

'

;

while (answer == ' y') {

printf ("\nThere are \"%d\"
print f

("\nDo you want them
cin >> answer;
if (answer ! = ' y'

)

{

printf ("==How many objects
cin >> num ;

cout << "==Starting Object
cin >> start_num;
cout << "\n" << flush;
num = num + start num;
}

;

objects \n" , total);
all? (y/n) \n");

do you want to retrieve? \n");

No . : "

;

for (number = start_num; number < num ; number++)

{

movie [0] = ' \0
'

;

strcpy (movie
,

genOid (number + 1000));
if ((p_people = (People*) p_oodbl- >fetch (movie)) != NULL)

{

printf ("\n Object NO. %d \n" , number);
p_people -> show();

printf ("Hit any key to continue");
blank = getchar();

} ; /* end of FOR */
cout<< "Do you want to quit the session (y/n) ? \n" ;

cin >> answer;
if (answer == 'y') answer = 'n';
else { printf ("\n\n\n\n")

;

answer = 'y';

p_oodbl - > abortT ()

;

**
* Result 022 *********************
The observed behaviors are as follows:
Start T1 with read and start T2 with reading the same object.
If T1 commits, T2 will be lockout.
If T2 commits, T1 will be lockout.
The lockout occurred at commit time. Since both T1 and T2 are reading, no
modificiation to the data occured. The second commit got lockout, but the read
operation is fulfilled.

C 51

/Jr**/
/* Testing Program */
/* for */
/* Texas Instruments OOODB */
/* */
/* File Name: pfetch con2 . cc */
/* Date : 05/31/94 */
/* Modifing : 06/26/94 */
/* Version : 1 .

2

*/
/* */
/* Test ID No. : BDBF-023 */
/* Description : Test for concurrency control when one client is */
/* retrieving, while the other client is trying to */
/* update the same object. */
/* Requirements

:

Start running T1 : an "update object" program. */
/* At another window initiate T2 : a "fetch object" */
/* program. Commit T2 first then T1

.

*/
/* Expected Results: No standard way for concurrency control. * /
/* Expect one transaction will be locked out. */
/* */
/* C++ API commands used: */
/* beginTransaction (

)

*/
/* commitTransaction (

)

*/
/* fetch ("sequence No") */
/* abortTO */
/* */
/* Testing Results : When T2 commits, the update of T1 is locked. */
/* */
/******+**+****+****+**+******+******* * * * * * j

#include "OpenOODB .
h"

#include "Type info .
h"

#include <libc . h>
#include <stdio . h>
include <stdlib . h>
#include <strings . h>
#include <iostream.h>

#include "schema .

h"

browse (

)

{

s_String* name;
int i ;

int num, number;
int start_num;
int total;
char answer;
int blank;
char* key = new char [3 0]

;

char* movie = new char [40];

printf ("==Following is going to retrieve the data from movie DB==\n\n\n")
printf (" ==Name of the classes is People\n");
number = 0

;

OODB *p_oodbl = new OODB ("speckle : 8000")

;

name = new s_String [12]

;

People *p_people;
for (i = 0; i < = 1 1 ; i + +) name[i] = new char[30],-
p_oodbl - > beginT ()

;

movie [0] = ' \0 '
;

number = 1;
strcpy (movie, gen0id(1000 + number))

;

while ((p_people = (People*) p_oodbl- >fetch (movie)) != NULL)
{

C 52

number++

;

strcpy (movie, gen0id(1000 + number))

;

total = number- 1;
num = number;
start_num = 1;

printfC'Do you want to retrieve OBJECTS? (y/n) \n");
cin >> answer ;

key [0] = ' \0 '
;

while (answer == ' y') {

printf ("\nThere are \"%d\"
printf("\nDo you want them
cin >> answer;
if (answer != 'y')

{

printf ("==How many objects
cin >> num ;

cout << "==Starting Object
cin >> start_num;
cout << "\n" << flush;
num = num + start num;

objects \n" , total);
all? (y/n) \n");

do you want to retrieve? \n");

No . : "

;

for (number = start_num; number < num ; number++)

{

movie [0] = ' \0
'

;

strcpy (movie
,

genOid (number + 1000));
if ((p_people = (People*) p_oodbl- >fetch (movie)) != NULL)
printf ("\n Object NO. %d \n", number)

;

p_people -> show ()

;

{

printf ("Hit any key to continue");
blank = getchar ()

;

}; /* end of FOR */
cout<< "Do you want to quit the session (y/n) ? \n" ;

cin >> answer;
if (answer == 'y') answer = 'n';
else

{
printf ("\n\n\n\n")

;

answer = '
y

'

;

p_oodbl -> abortT ()

;

AT****************
* Result 023 *

*******************+**

The observed behaviors are as follows:
T1 ->start to update, then
T2 ->try to retrieve.
T2 got the data and commit.
T1 -> Updating has been done and try to commit, but failed.
T2 has been committed.

The error message with T1 is as following:

OpenOODB file : kernel/exodus . c line: 330 errno: 786441
error id : esmLOCKCAUSEDDEADLOCK - lock reqeust causes

OpenOODB file : kernel/asm. c line: 592 errno: 786441
error id : esmLOCKCAUSEDDEADLOCK - lock reqeust causes

ASM_Client : : Write_0bj ect () : sm_SetOb j ectHeader Failed - 1.

deadlock

deadlock

C 53

/****
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/

Testing Program
for

Texas Instruments OOODB

i

* /

File Name
Date
Modif ing
Version

update_con3 . cc
05/31/94
06/26/94
1.2

Test ID No. : BDBF-024
Description : Test for concurrency control when one client is

updating, while the other client is trying to
retrieve the same object.

Requirements: Start running T1 : a "fetch object" program.
At another window initiate T2 : an "update object
program. Comit T2 first then T1

.

Expected Result : No standard way for concurrency control

.

Expect the fetched object should not get
old (earlier versioned) data.

C++ API commands used:
beginTransaction (

)

commitTransaction (

)

fetch ("sequence_No"

)

persist ("my_object"

)

commitT (

)

abortT (

)

Testing Results : If updated is commited first, the previous
will be the old data.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

read */
*/
*/

**

#include
#include
#include
#include
#include
#include
ttinclude

"OpenOODB .

h"

" Typeinfo .

h"

<libc . h>
<stdio . h>

<stdlib . h>
<strings . h>
<iostream. h>

#include "schema .

h"

OODB *p_oodbl = new OODB (" speckle : 8 000 ")

;

void People : :update_value (char *key)

char value [maxFieldWidth]

;

printf ("============ ===========\n\n")

;

printf ("Editing the Value \n");
printf ("Original Record Key is \n\n");
printf ("id_name : %s\n\n", id_name)

;

strcpytkey, id_name)

;

printf ("Updating the record \n\n\n");
printf ("Note : if no change, the original Value has to be retyped !! \n\n"

)

printf ("Field (1): pcode : %s\n", pcode);
printf (" Input New Value : \n");
scanf (

" %s", pcode);

// cin.getline (value, 81);
// if (strcmp (value, "") != 0) strcpy (pcode , value);

printf ("\nField (2): dcode : %s\n", dcode);
printf (" Input New Value : \n")

;

scanf (
" %s" , dcode);

printf ("\nField (3): Dow start end : %s\n", dow start end);

C 54

printf (" Input New Value :

scanf (
" %s", dow_start_end);

printf ("\nField (4): last_name
printf (" Input New Value :

scanf (
" % s", last_name);

printf ("\nField (5): first_name
printf (" Input New Value :

scanf (" %s", first_name);

printf ("\nField (6): dob :

printf (" Input New Value :

scanf (" %s", dob);

printf ("\nField (7) : dod :

printf (" Input New Value :

scanf (" %s" , dod);

printf (" \nField (8) : origin :

printf (" Input New Value :

scanf (
" %s", origin);

printf (" \nField (9): notes :

printf (" Input New Value :

scanf (
" %s", notes);

\n") ;

: %s\n", last_name);
\n") ;

: %s\n", first_name);
\n”) ;

%s\n", dob) ;

\n") ;

%s\n", dod)

;

\n") ;

%s\n" , origin) ;

\n") ;

%s\n", notes);
\n") ;

main (

)

{

int number;
char answer;
char* key = new char [maxFieldWidth]

;

char* people = new char [maxFieldWidth]

;

People *p_people = new People;

printf (" ==Following is going to retrieve the data from people DB==\n\n\n"

)

printf (" ==Name of the classes is People \n");
number = 0

;

p_oodbl -> beginTO;
printf ("Do you want to retrieve and update OBJECTS? (y/n) \n");
cin >> answer;
key [0]

= ' \ 0
'

;

// while (answer == 'y')
{

// printf ("Do you want to retrieve specific OBJECTS? (y/n) \n");

// cin >> answer;
while (answer == 'y'){

printf (" Please
,
give the key: NAME of the PEOPLE\n");

cin >> key ;

if ((p^people = (People*) p_oodbl- >fetch (key)) != NULL)

{

p_people -> show ()

;

p_people -> update_value (people)

;

p_people -> show ()

;

}
else ("The NAME: %s record is not exisiting in the DB.\n", key)

;

printf ("Are you sure all of the values are right? (y/n) \n");
cin >> answer;
if (answer == 'y') p_people- >persist (people) else printf (" You can

modify it later on !!\n");
printf ("Do you want to retrieve more OBJECTS? (y/n) \n");

cin >> answer;
};

/* printf ("Do you want to quit the session (y/n) ? \n");
cin >> answer;

c 55

\n\n")

;

if (answer == 'y') answer = 'n';
else

{
printf("\n\n

answer = '
y

'

;

*/

printf (

" \n\n Successfully !
\n\n")

;

// p_oodbl -> abortT ()

;

p_oodbl -> commitTO;
return (0)

;

}

* Result 024 *

The observed behaviors are as follows:
T1 -> start to retrieve the object, then wait.
T2 -> start to update the same object and try to commit.

T2 will commit first and T1 will be lockout from committing.
T1 have read the "old" data.

C 56

I *****

1

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Testing Program

for
Texas Instruments OOODB

File Name
Date
Modif ing
Version

update_con . cc
05/31/94
06/26/94
1.2

Test ID No. : BDBF-025
Description : Test for concurrency control when two clients

are trying to update the same object.
Requirements: Two clients T1 and T2 both are initiating an update

program on same object. T2 commit first.
Expected Results: No standard way for concurrency control.

Expect one transaction is updating and the other
should wait until lock is released.

C++ API commands used:
beginTransaction (

)

commitTransaction (

)

fetch ("sequence_No"

)

persist ("sequence_No"

)

abortTO
commitT (

)

Testing Results : One of the transaction is lockout.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/
#include "OpenOODB.h"
#include "Typeinfo.h"
#include <libc.h>
#include <stdio.h>
#include <stdlib.h>
ttinclude <strings.h>
#include <iostream.h>

#include " schema. h"

OODB *p_oodbl = new OODB ("speckle : 8000")

;

void People : :update_value (char *key)

//
//

char value [maxFieldWidth]

;

printf ("=======================\n\n")

;

printf ("Editing the Value \n");
printf ("Original Record Key is \n\n");
printf (" id_name : %s\n\n", id_name)

;

strcpy(key, id_name)

;

printf ("Updating the record \n\n\n");
printf ("Note : if no change, the original Value has to be retyped !! \n\n"

]

printf ("Field (1): pcode : %s\n", pcode);

printf (" Input New Value : \n");

scanf (
" %s", pcode);

cin
.
getline (value , 81);

if (strcmp (value ,
"") != 0) strcpy (pcode , value);

printf (" \nField (2): dcode : %s\n", dcode);

printf (" Input New Value :

scanf (" %s", dcode);
printf ("\nField (3): Dow_start_end
printf (" Input New Value :

scanf (" % s", dow_start_end);

printf (" \nField (4) : last_name

\n") ;

\n"
%s\n"

,

) ;

dow start_end

%s\n"

,

last name)

C 57

printf (" Input New Value :

scant (" %s", last_name);

printf ("\nField (5): first_name
printf (" Input New Value :

scanf(" %s", first_name);

printf (" \nField (6) : dob :

printf (
" Input New Value :

scant (
" % s " , dob)

;

printf (" \nField (7): dod :

printf (
" Input New Value :

scant (
" %s" , dod)

;

printf (" \nField (8): origin :

printf ("Input New Value :

scant (" %s", origin);

printf ("\nField (9): notes :

printf (" Input New Value
scant (" %s" , notes);

\n") ;

: %s\n", first_name
\n") ;

%s\n" , dob)

;

\n") ;

%s\n", dod) ;

\n") ;

%s\n", origin);
\n") ;

%s\n", notes);
\n") ;

}

main (

)

{

int number;
char answer;
char* key = new char [maxFieldWidth]

;

char* people = new char [maxFieldWidth]

;

People *p_people = new People;

) ;

printf ("==Following is going to retrieve the data from people DB==\n\n\n")
printf (" ==Name of the classes is People \n");
numbe r = 0

;

p_oodbl -> beginTO;
printf ("Do you want to retrieve and update OBJECTS? (y/n) \n");
cin >> answer;
key [0] = ' \0

'

;

// while (answer == ' y')
{

// printf ("Do you want to retrieve specific OBJECTS? (y/n) \n");
// cin >> answer;

while (answer == ' y'){
printf ("Please, give the key: NAME of the PE0PLE\n");
cin >> key ;

if ((p_people = (People*) p_oodbl ->fetch (key)) != NULL)

{

p_people -> show ()

;

p_people -> update_value (people)

;

p_people -> show ()

;

}
else ("The NAME: % s record is not exisiting in the DB.\n" , key)

;

printf ("Are you sure all of the values are right? (y/n) \n");
cin >> answer;
if (answer == 'y') p_people- >persist (people) ; else printf (" You can

modify it later on !!\n");
printf ("Do you want to retrieve more OBJECTS? (y/n) \n");

cin >> answer;

/* printf ("Do you want to quit the session (y/n) ? \n");
cin >> answer;

if (answer == 'y') answer = 'n';
else

{
printf ("\n\n \n\n");

answer = '
y

' ;

} ’

C 58

};
*/

printf ("\n\n Successfully! \n\n")

;

// p_oodbl -> abortT ()

;

p_oodbl -> commitT ()

;

return (0) ;

}

* Result 025 *

The observed behaviors are as follows:
Case 1

:

T1 ->start to update, then
T2 -> start to update.
T1 ->try to commit, but has to be waiting T2

.

T2 ->try to commit, T2 ' s request causes deadlock, system failed, then
T1 successfully committed.

Following are the message provided by system:

OpenOODB file : kernel/exodus . c line:330 errno:786441
error id : esmLOCKCAUSEDDEADLOCK - lock reqeust causes deadlock

OpenOODB file : kernel/asm. c line: 592 errno: 786441
error id : esmLOCKCAUSEDDEADLOCK - lock reqeust causes deadlock

ASM_Client : :Write_Object () : sm_SetObj ectHeader Failed - 1.

Case 2 :

T1 ->start to update, then
T2 -> start to update.
T2 ->try to commit, but has to be waiting T1

.

T1 ->try to commit, Tl's request causes deadlock, system failed, then
T2 successfully committed.

A- - 59

